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Abstract. This report aims to compare methods that can be used to ef-
ficiently and accurately map digital price labels position in R3 using a mobile
robotic platform equipped with camera vision in a retail environment. The
robotic platform built during the project uses four wide angle cameras to cover
the full circular view in the horizontal plane. Installation of external systems
for e.g. navigation can be very costly and time demanding. The accuracy,
repeatability and time consumption have been evaluated for a set of methods
and combinations thereof with and without external hardware. The result of
the tests shows a proof-of-concept with good results but also emphasizes the
need for a robust system. The mapping is done with high accuracy even when
the external hardware for navigation is completely removed. As a part of the
project a novel line following algorithm has been developed which shows results
far better than any published results found and yet capable of running in real
time utilizing limited hardware.

keywords
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Author’s preface

As an optimist I am sure that in the future robots will work back-to-back with
humans in every field of work to ensure a comfortable living for us. The interest
in robotics has always been a big part of me but despite my love for artificial in-
telligence my studies led me to the mechanical engineering programme. With an
almost finished master specialized in mechatronics I searched my way towards
studies in artificial intelligence at Nanyang Technological University in Singa-
pore. The combination of my studies finally led me to my thesis at the Centre for
Mathematical Sciences at Lund University, Sweden. For six months I have been
working in an inspiring environment at the office of Cognimatics AB in Lund to
finalize my thesis work. In the area of simultaneous localization and mapping
there are always large efforts going on to push the boundaries, notwithstanding
I am convinced that I have presented information complementing the work of
others. With the final results in my hands my supreme and most important
conclusion is that it has been a worthwhile experience for me and hopefully for
all other parties involved.

The thesis is partly based on the following paper supplemented in appendix.

• Daniel Falk. Cognitive vision for line following using stroke width vector-
ization, 2016. Manuscript submitted for publication.
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my primary supervisor H̊akan Ardö for invaluable guidance in cognitive vision
processing, mathematics and proofreading of the final report. The work in the
project is based on the readings of hundreds of conference papers, theses and
books among others written by my examiner Kalle Åström and supervisors
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Introduction

Pricer AB has delivered more than 110 million digital price labels to over 13,500
stores world wide. Although the wireless system includes a method for geolo-
calization the accuracy is measured in meters. The system developed and pre-
sented in this report uses a mobile robot equipped with multiple cameras to
build an accurate 3D map of the price labels’ positions where the precision is in
centimeter-range.

The main area of research in the field of robotics today concerns the aware-
ness of the robot. To be aware of the environment the choice of sensors are of
highest interest. Today digital cameras are available at low prices with previ-
ously unmatched performance. The main problem consists of understanding the
constant stream of data. For decades industry and academia have been trying
to improve the computers understanding of their environment based on single
or multiple view camera images. Although the advances have been great the
community still lies in a big data - low understanding situation.

This project has been focused on using multiple cameras on a mobile robotic
platform to scan retail stores and find the position of digital price labels on the
shelves. To maximize the sale and revenue much effort is spent planning the
layout of retail stores, both using data mining techniques [52], [23], [33] and
subjective experience. This process is often done remotely, especially in larger
chains of stores. The physical placement of the products are performed by other
personnel in the retail environment. The latter often introduces uncertainties in
the placement and deviations from the plans possibly resulting in large reduction
of revenue and profit.

When using multiple cameras as one the mathematics is commonly not fully
understood. When a non-projective general imaging device is utilized the prob-
lem is often split up into several stereo vision problem albeit important informa-
tion is lost. By evaluating and proposing a set of methods that can be used for
Simultaneous Localization And Mapping (SLAM), or as often called in cognitive
vision academy: Structure from Motion (SfM), a baseline for implementation
and usage is introduced.

To make the result of the project as applicable as possible, avoiding purely
theoretical solutions that do not reflect good results in reality, the project has
been carried out in close cooperation with Pricer AB. Pricer AB is the global
leader in digital shelf-edge solutions. With thousands of retail stores using their
equipment the use for methods developed in this project is huge.
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Figure 1: The Pricer Electronic Shelf Label system replaces paper price la-
bels with digital screens connected to the network. In the right image the IR
transmitters and the controllable green LEDs can be seen on each price label.

The methods implemented in the report combines the classical Simultaneous
Localization And Mapping problem or the related Structure from Motion with
an evaluation of sensors for navigation and estimation. In Figure 2 a simplified
overall drawing of the experimental environment is visualized. The mobile robot
is equipped with four wide angle cameras, a computer with WiFi and a set of
sensors. Roof mounted cameras are evaluated to improve the localization of the
mobile robot. A digital price label system has been installed in the laboratory
together with other equipment to simulate a retail store as closely as possible.
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Figure 2: Experimental setup to develop and evaluate the system and meth-
ods. A mobile robotic platform equipped with vision systems can scan a retail
environment to find digital price labels and map them in three dimensions.
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Related work

The area of Simultaneous Localization And Mapping (SLAM) has been much
researched and many papers focusing on different aspects of it are available such
as Aulinas Josep, et. al. taking a rather wide view over the problem [24]. A
paper by Andrew J. Davison et. al. presents an algorithm for SLAM using a
single camera [39]. In the paper by Micheal Kaess and Frank Dellaert a method
for SLAM using eight arbitrarily placed cameras was presented [56].

Much of the research within SLAM and SfM has focused on relatively dense
data sets extracted either from laser scanners [40], [45], [50] or from dense feature
point extraction in images [43], [32], [54]. With low-cost sonars as sensors Teddy
N. Yap, Jr. and Christian R. Shelton entered the area of sparse data sets [73].
In their paper a minimum of 5915 data points were used which although sparse
compared to the normal case is approximately hundred times denser than what
is evaluated in this report.

The detection and identification of digital price labels based on a blinking
characteristic is an area that has not been found in any papers. However the
topic of detecting a blinking human eye has seen quite a bit of research. In a
paper by Kristen Grauman et. al. communication based on the blinking pattern
[47] was investigated and performed with many methods related to what is used
in this report. Further research and implementation within the same topic have
been done by Michael Chau and Margrit Betke [36].

Indoor navigation for route optimization is briefly investigated in this report.
Some research of related navigation has been performed but not many publica-
tions covering autonomous in store navigation have been found. A patent by
Zimmerman, Thomas Guthrie [75] shows as many other sources that the map
building is automatic but the navigation through the store is manually done by
an operator. Many indoor navigation systems relies on extensive RF tagging
and accurate floor plans. The work carried out by Aveek Purohit, Zheng Sun,
Shijia Pan and Pei Zhang [64] differs by using customers radio frequency and
magnetic signatures to automatically build a map of movable pathways. Us-
ing this approach a success rate of above 85 percent has been reached with an
accuracy of 0.7 meters. This method could be combined with the force field
navigation that is briefly touched in this report to create an optimal route. The
lack of precision can easily be bypassed by doing small real time modifications
to the path using simple distance measurement sensors on the robotic platform.

Line detection and following have been part of the methods developed in
this project. Much academic effort has been put with the focus to find robust
techniques to detect lines and curves in images. A common method is to use
Hough Line Transform [57], [53] to identify the dominant lines in the image. This
was used in the Johnny-5 robot [25], first prize winner in the 2004 Intelligent
Ground Vehicle Competition. This method removes all information about the
curvature of the lines which holds much of the wanted knowledge. Another
further developed method uses the vanishing point and combines it with a lane-
curve function [65]. This method is good for outdoor navigation where the
line/road has a clear vanishing point but would struggle with the indoor line
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following where the curves can be sharp and closely following each other. The
method implemented during the project has surprisingly many similarities with
the text detection problem in the Stroke Width Transform [41] developed by
Boris Epshtein, Eyal Ofek and Yonatan Wexler.
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Notations

To simplify the understanding of the equations some notations have been used
throughout the report. Scalars are written as non bold characters while sets,
vectors and matrices are written in bold notation. Sets of numbers are written
as upper case letters while vectors and matrices are either upper or lowercase
bold letters. The absolute value of a scalar s is written as |s|. A vector, v, in Rn
is written as v = (v1, v2, ..., vn)T while a matrix m =

[
v1 v2 v3

]
is written

with square brackets and a set S = {1...S} is written with curly brackets. L2

norm of a vector v, i.e Euclidean distance, is written as ‖v‖2 and cardinality of

a set, S, is written as S. The right arrow is used when defining new functions
based on a specified input variable such as the R3 to R1 Euclidean distance

v = (a, b, c)T → L2(v) =
√
a2 + b2 + c2

vi
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1 Terminology and methods: SLAM, SfM, BA

As a preceding step to the development and evaluation of algorithms the termi-
nology and choice of method have to be explained. The terminology of Simul-
taneous Localization And Mapping (SLAM) and Structure from Motion (SfM)
may sometimes be used in a confusing mixture and may or may not mean the
same. Another less known term related with similar meaning is as an example
Structure and Motion.

1.1 Terminology

The terms of Structure from Motion and monocular Simultaneous Localization
And Mapping are often used interchangeably. SfM has its heritage in the pho-
togrammetry community where the aim was to create scale models of a 3D
object or environment based on an often sparse set of images. In these cases a
projective model was often used and an optimization method such as Bundle
Adjustment (BA). SLAM on the other hand was developed by the mobile robot
industry with the same goal of creating a 3D model of the surroundings. In the
cases with mobile robotics the sensor readings were often denser and covered a
larger area. It could consist of cameras or other sensors such as lasers or ultra
sonic transceivers. In SLAM related cases the filtering methods have historically
been more common. In the latter years the two areas of research have in many
cases merged and their terminology are therefore often used interchangeably.

1.2 Methods

Filtering methods, such as Kalman Filters (KF) or Monte Carlo Localization
(MCL, particle filter), dismiss all previous poses and represent the gained in-
formation as a probability distribution. Key-frame methods such as BA make
use of all poses’ observations or a subset thereof. The subset can be defined
by a sliding window or distributed key-frames. In (smaller) problems where all
observations are used in the BA it is called a global Bundle Adjustment. In a
wide and general case a successful method is to use the assumption of Gaussian
distribution such as in BA or Extended Kalman Filters (EKF).

1.2.1 Complexity

In a simple case where only the core of the method is evaluated and bordering
tasks such as the detection of tracking points are omitted the complexity of
the BA and the EKF can be described based on the number of used frames f
and the number of tracked points included in the map, n. The complexity is
dependent of the structure of the mapping. In a dense mapping every tracked
point is visible in each and every frame. This is normally not the case resulting
in a sparser problem. As for an initial estimation to understand the methods
the complexity derived by Strasdat, Hauke et. al. [68] was used

OBA(f2n) (1)

1



and
OEKF(n3) (2)

The total number of tracked points is a fixed value given by the number of
price labels used in the store. In Figure 3 the complexity of the calculation for
a frame given the two methods is visualized as a function of the total frames,
f ∈ {0...8000}, and total detected labels, n ∈ {0...10000}.

Figure 3: Visualization of the methods complexity response to input size of
total frames and landmarks used. Left: Bundle Adjustment, right: Extended
Kalman Filter.

In a retail environment where the price labels are dense the Bundle Adjust-
ment method might be to prefer over the Extended Kalman Filter.

1.2.2 Analysis of efficiency

The efficiency of the algorithms have been investigated in a deeper sense by
Strasdat, Hauke et. al. [68]. The efficiency is affected by factors such as the ac-
curacy of the algorithm and the search time to detect labels in the images. One
conclusion indicates that it is better to increase the number of tracked points
before the number of poses the tracking is conducted at. In the retail environ-
ment the number of tracked points is given by the number of installed price
labels and is therefore not a changeable parameter. Their conclusion also states
that in general Bundle Adjustment is superior to Extended Kalman Filtering.
When only a small processing hardware is available the filtering methods might
be better but when high quality results are requested the Bundle Adjustment
is preferable. In accordance with 1.2.1 Complexity the choice of method was
therefore decided in favor for the Bundle Adjustment method.

2



2 Theory of 3D projection and optimization

The following section starts with a fast explanation of the basic math behind
world projection to an image and image planes correspondence to each other.
Camera calibration and pose estimation are explained. The section focuses
mainly on the calibration of the robotic platform, that is: the relative location
of the four cameras, the two beacons locations and pose of the statically mounted
roof cameras. The theory is here explained as generically as possible but is in
the 6 Implementation section applied to the specific environment used in this
project.

2.1 A world point’s projection in the image plane

The image plane of the camera is placed a distance f behind the cameras focal
point where f is the focal distance. For simplification the image plane can be
assumed to be placed in front of the focal point, thus inverting the image plane
axes i.e. rotating the image π radians within the plane. In addition to the world
coordinate system lets define a coordinate system with its origin in the cameras
focal point such that the image plane is located at i′ = (0, 0, f)T . Lets further
say that its z-axis is perpendicular to the cameras image plane. The relation
between the world coordinate system and this system can be described by a
rotational matrix R and a translation t. A point X in the world coordinate
system can thus be transformed to coordinates X ′ in the cameras coordinate
system according to

X ′ = RX + t (3)

By increasing the dimensionality of the point into the projective space the
point will be scale invariant. In homogeneous coordinates a point in R3 X =
(Xx, Xy, Xz)

T is defined as X = (X1, X2, X3, X4)T where

Xx =
X1

X4
, Xy =

X2

X4
and Xz =

X3

X4

thus X is the same point as 2X or nX where n is any real number. A point
X = (X1, X2, X3, 0)T is a point at infinity described by the direction of the first
three parameters. Using homogeneous coordinates Equation 3 can be further
simplified to

X ′ = TX, T =

[
R t
0 1

]
(4)

By modeling the camera as a pinhole camera the projected point in the image
plane can be found by simple geometry. Many books and publications seek to
punctiliously describe the process of projecting the world to the image plane.
Considering that, this report will not cover the details but instead refer the
interested readers to books such as Multiple View Geometry by Hartley R. et
al [51]. Instead it can be ascertained that given a 3x3 projection matrix K
known as the camera matrix the homographic projection onto the image plane
is described by

x ∝KTX (5)

3



where x is a homogeneous 2D coordinate, i.e. a 1x3 vector. The camera matrix
K is consisting of the focal length and optic center described in x and y pixel
lengths and might also include a pixel skew factor.

However the pinhole camera model does not model any lens distortion. Lens
distortion can be non linear and thus the coordinate system of an uncalibrated
camera is not Euclidean. When using wide angle cameras the image will be
distorted in what is sometimes called a barrel shape. In this report the lens
distortion is modeled using three radial and two tangential parameters. The
radial terms removes the so called barrel effect while the tangential terms com-
pensates for lenses not parallel to the image plane. Let u′ and v′ describe the
estimated coordinates in the distorted image based on the coordinates u and v
in an Euclidean image

u′ = u ∗ (1 + k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6) + 2τ1uv + τ2(r2 + 2u2)

v′ = v ∗ (1 + k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6) + τ1(r2 + 2v2) + 2τ2uv

r2 = u2 + v2

(6)

In some cases the inverse of the lens distortion is needed. It is not suitable to find
an algebraic inverse to Equation 6 however making use of Banach fixed-point
theorem, [62],[28], an iterative solution can be used

Algorithm 1 Inverse of lens distortion for an image point x = (u′, v′)T

u := u′

v := v′

while change < converge criteria do
r2 := u2 + v2

cinv := 1/(1 + ((k3r2 + k2)r2 + k1)r2)
lx := 2τ1uv + τ2(r2 − 2u2)
ly := τ1(r2 + 2v2) + 2τ2uv
u := cinv ∗ (u′ − lx)
v := cinv ∗ (v′ − ly)

return u, v

2.2 Solving the cameras position

With a set of known points in the world and their correlating projections in an
image it is possible to estimate the pose of a calibrated camera [44][60]. Every
known point introduces three new equations which are up to scale and thus also
introduces one unknown scale factor, λ. The pose of the camera is described by
a 3x3 rotational matrix and a 1x3 translation, totally including 12 parameters.
The number of known points, N , needed to solve the cameras position is thus
given by

3N −N > 12 ⇔ N > 6

4



However the rotational matrix has to be orthogonal and it has been proved [37]
that a cameras position can be found with a least squares manner with

N > 3, given rotational matrix constrains

Because of noise in the detection and discretization in the image sensor the
reprojections will have no exact solution. Thus the optimal solution is obtained
by minimizing the error. It is possible to use an iterative algorithm to find the
pose minimizing the sum of squared L2 reprojection errors for all points. Either
the actual detected point can be undistorted by using the iterative inverse of the
distortion or the projected point can be distorted using the faster Equation 6,
albeit in the latter case it needs to be calculated on every iteration’s calculation
of the cost function. From hereon it will be assumed that all image coordinates
are undistorted and thus represented in an Euclidean space. The minimizationn
is done over the camera pose, i.e. the cameras rotation and translation from the
world coordinates. To project the points the transformation matrix, including
the rotation matrix, is needed. To minimize a function with a rotational matrix
as input demands that the two conditions for the rotational matrix are fulfilled;
a rotational matrix is orthogonal and has a unit determinant

RTR = I and detR = 1 (7)

Lets define the optimization matrix Q as an Euler rotation and a translation
vector

Q = [r|t] =



rx tx
ry ty
rz tz


 (8)

The vector with rotations around x,y and z axis can be converted to a rotational
matrix according to:

r =



rx
ry
rz


→

R = R(r) =




1 0 0
0 c(rx) s(rx)
0 s(rx) c(rx)






c(ry) 0 s(ry)
0 1 0

−s(ry) 0 c(ry)





c(rz) −s(rz) 0
s(rz) c(rz) 0

0 0 1




(9)

where c denotes the cosine and s denotes the sine function. From a matrix Q it
is thus possible to calculate a transformation matrix T :

Q = [r|t]→ T = T (Q)
Equation 9

= T (R, t) =

[
R t
0 1

]
(10)

With N known points with the detected image coordinates xn and the repro-
jected coordinates x̃n the minimization problem can be described as

argmin
Q

N∑

n=1

vn ‖x̃n − xn‖22 (11)

5



where vn is a binary variable stating if the point n can be seen in the image.
Defining function

v = (α, δ, ω)T → pflat(v) = (
α

ω
,
δ

ω
, 1)T (12)

and combining with the equation for projection, Equation 5, the minimization
problem can be written as

argmin
Q

N∑

n=1

vn ‖pflat(KT )− xn‖22 (13)

2.3 Finding cameras relative positions

If the relative pose and intrinsics of the cameras are known it is possible to
see them as what is called a single generalized image device [63], [26]. A pro-
jective camera only has one focal point which all light rays pass through. A
general image device on the other hand can have multiple focal points at dif-
ferent locations but can still in many situations be considered as a single camera.

Lets again use the matrix Q defined in Equation 8 i.e. a 3x2 matrix and de-
fine O as a matrix containing the translation and rotation vectors for all used
cameras, c ∈ {1...C}, at all positions, f ∈ {1...F}, where a frame was taken

O =




Q11 Q12 . . . Q1C

Q21

...
...

...
...

...
...

...
QF1 . . . . . . QFC




(14)

with the size 3Fx2C. Equation 11 can be expanded to cover the reprojection
error from all cameras and image positions:

argmin
O

F∑

f=1

C∑

c=1

N∑

n=1

vf,c,n ‖x̃f,c,n − xf,c,n‖22 (15)

We can thus in a single optimization problem find the pose for all the cameras
at the time of each frame. The same result as is achieved by solving Equation 15
can be found by solving Equation 11 one time for each camera and frame. The
reason that Equation 15 is more powerful comes with the power to introduce
further constrains.
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Figure 4: Mounted on a fixed platform the cameras can be modeled with static
relative pose to each other. Even if the pose of the robot changes the trans-
formation between the cameras stay the same, albeit the transformation from
the first camera to the world origin changes. Using this knowledge the degrees
of freedom reduces from 6FC to 6(F + C − 1) where F is the number of robot
poses and C is the number of cameras.

With the cameras mounted fixed on the robot we can make use of the knowl-
edge that even if the world coordinates are not known the relative pose between
the cameras will always stay the same. This can be considered as a kinematic
chain. We can define F different transformations from the first cameras co-
ordinate system to the world system, T co

f , and F − 1 transformations, T cc
i,i−1,

between the camera i and i− 1 where i ∈ {F, .., 3, 2}. Given a camera, c, and a
frame, f , the transformation to the world system can now be calculated as

T c,f =
( F−1∏

j=0

T cc
F−j,F−j−1)

)
T co
f (16)

Using this approach the optimizing matrixO in Equation 15 can now be reduced
to

O =
[
QCO

1 ,QCO
2 , ...,QCO

F ,QCC
2,1 ,Q

CC
3,2 , ...,Q

CC
C,C−1

]
(17)

thus reducing the degrees of freedom from 6FC to 6(F + C − 1). The mini-
mum case to the relative pose problem with two generalized cameras has been
investigated by Stewnius, Henrik, et al. [66] using the intersection of six image
rays. With a large number of dimensions to optimize over the possibility to
get stuck in local extremities increases when using iterative algorithms. The
cameras on the robot built in this project are expected to be placed on a circle
in the horizontal plane, and with its image plane parallel to the circles tangent
and perpendicular to the cameras next to it. It can be assumed that the error
marginal for the angle and position is small. With this assumption the pose
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of the image planes in the model can be defined to be tangential to a sphere
around a common center point. All the cameras pose in relation to the center
point can thus be described using one three degree of freedom rotation vector
for each camera and a common radius. With this approach the total degrees of
freedom in the search problem is reduced to 3(F + C) + 1. To make sure that
the model is as accurate as possible this simplified model can be used to find
the initial guess for the more complex and accurate model thus minimizing the
possibility of getting stuck in a local minimum.

Figure 5: To further reduce the degrees of freedom all cameras can be assumed
to have their image plane as a tangent on the same sphere. The distance in the
cameras z-axis to the center of the sphere is then all the same for the cameras.
The degree of freedom is then reduced to 3(F + C) + 1.

Lets use the vector SCCO
f as the translation from the camera spheres center

point at location f to the world origin and the vector SCCC
c as the rotation

vector from the camera c to the spheres center. The radius of the sphere is
represented by r. The optimization vector O can now be defined as

O =
[
{SCCO

1 }T , {SCCO
2 }T , ..., {SCCO

F }T , {SCCC
1 }T , {SCCC

2 }T , ..., {SCCC
C }T , r

]

(18)
where the transform from camera center to world origin is given by

SCCO
f = (Stx, Sty, Stz)

T → QCCO = QCCO(SCCO
f ) =

[
03x1 SCCO

f

]

(19)
and transformation from camera c to sphere center is given by

SCCC
c = (Srx, Sry, Srz)

T

r

}
→ QCCO

f = QCCO
f (SCCC

c , r) =



Srx 0
Sry 0
Srz r




(20)
Using this knowledge about the cameras intrinsics and extrinsics it is now pos-
sible to consider the setup as one single generalized image device.
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2.4 Estimate 3D positions in partly unknown point clouds

Given a point cloud where the real world coordinates are known for a subset
of the points, the location of the rest of the points can be estimated using the
knowledge gained from the camera calibrations. Four known points are needed
to find the pose of a camera in three dimensions, the same goes for the gener-
alized imaging device created from the combination of the calibrated cameras
[37]. With a perspective camera, i.e a camera with a single focal point an infi-
nite number of solutions can be found to the perspective 3-point problem if all
points are collinear, i.e on the same line through space. With a non perspective
imaging device another non solvable case can be found where the rays from the
point to the cameras focal points are parallel. In the first case the rotation
around and the translation along the axis on which the points lies are unknown
and in the second case the translation along the rays is unknown. If the cameras
are overlapping and the unknown points can be seen in at least two cameras
from the same robot location the points’ 3D coordinate can be estimated from
frames taken from a single robot position. In the other case at least two different
locations need to be used to solve the points’ locations. The method proposed
consist of the following steps:

1. Start with an initial guess of the robots position

2. Rotate the robots pose estimation around the vertical axis in smaller and
smaller steps until all points are in front of the image plane of all the
cameras that can see them

3. Solve robot pose iteratively by minimizing the sum of the reprojection
errors for all cameras

4. Solve all unknown points locations linearly by triangulation, use singular
value decomposition to find an approximation of the nullspace

5. Optimize over all variables using bundle adjustment to find the maximum
likelihood solution to the complete problem

2.4.1 Initial guess

The initial guess is of utter importance for the result. The cost function for a
minimization problem of this scale has a large amount of local minima and an
unrestricted search space. With the wrong initial guess it is thus possible to get
an unacceptable solution. According to the experiments done during this project
the initial guess of position is not as crucial and can easily be done by observed
subjective estimate. The most restricting technique used at this stage is the
rotation around the vertical axis. Using the stop condition that all points seen
by the camera should be in front of image plane is fine as long as the position
is correct. If the guess of the position is not correct there might be a situation
where no rotation is fulfilling the stop criteria. No more time has been spent to
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this problem because using the techniques of either deduced reckoning or roof
mounted cameras explained during the later chapters yields good estimation of
both position and direction thus removing the need completely for step 2 in the
enumeration above.

2.4.2 Solve robot pose

The robot’s locations relative to each other can be solved by minimizing the
reprojection error of all points, known or unknown, in the cameras’ image planes
while the absolute positions are yielded from the reprojection of the known
points. To find the robots position from known points Equation 15 is reused
but this time the minimization matrix is defined as

O =
[
Q1 Q2 ... QF

]
(21)

where Qf is the six degree of freedom translation and rotation of the robot
at the location of frame f ∈ {1...F}. In the case where the cameras are fixed
on a robot traveling on a planar surface the number of degrees of freedom can
be reduced to three, a two axis translation and a one axis rotation. With two
known points seen from the generalized image source the possible positions of
the robot is located on a circle in the plane which normal is parallel to the
line going through both the points. It is thus possible to have a maximum of
two intersections with the horizontal plane that the cameras are assumed to be
traversing in. Further more if the identity of the two points are known one of
the two intersections would result in the robot being up-side-down. Thus two
identifiable points are enough to position the robot. The only exception to this
is if the axis between the two points is perpendicular to the ground plane, the
circle can then either be in the plane resulting in an infinite amount of solutions
or parallel with the plane resulting in none solutions.
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Figure 6: With two uniquely identifiable points the pose of the robot is bound
to a circle. If the robot is restricted to traveling in a plane only a maximum
of two positions are possible. If the robot is allowed to rotate only around the
planes normal axis only one possible solution is left.

2.4.3 Triangulation of points

A point seen in a camera can be expected to be located close to the R3 line
defined by the projection point in the image plane and the cameras optic center.
Given a cameras limited resolution the theoretical space mapped to a specific
pixel is described by a pyramid shape where the top of the pyramid is the focal
point and each side of the pyramid goes through the edge of the pixel. This
volume is further extended by the introduction of noise. Given this it can be
understood that a number of lines going from different cameras optic center and
through the center of the detected pixel are not likely to intersect each other in
space. The relations between the coordinates can be solved using Direct Linear
Transform [51]. Because of the homogeneous coordinates the relations are up
to scale and we can thus introduce a scalar λn for each projection equation.
Equation 5 can thereby be written as

λx = KTX (22)
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Applying Equation 22 to each camera, c ∈ {1...C}, seeing the same point X
results in




K1T 1 −x1 0 . . . 0
K2T 2 0 −x2 . . . 0

...
...

...
...

KCTC 0 0 . . . −xC







X
λ1

λ2

...
λC




= 0 (23)

which also can be described as the 3C× (4 +C) A matrix, the 4 +C row vector
v and a 4 + C null row vector

Av = 0 (24)

Based on the volume being mapped to the same pixel it is most unlikely that
Equation 23 has an exact nonzero solution. By using singular value decomposi-
tion the approximative nullspace can be found [59] as the eigenvector ofA found
as the column in V corresponding to the smallest eigenvalue which is found in
the diagonal elements of Σ

A = UΣV ∗ (25)

V ∗ is the conjugate transpose which is the same as the transpose whenA consist
of non complex values

Areal = UΣV T (26)

2.4.4 Bundle adjustment

The quantity being minimized in the linear cost function is
∥∥∥∥∥∥∥∥∥




K1T 1X − λ1x1

K2T 2X − λ2x2

...
KCTCX − λCxC




∥∥∥∥∥∥∥∥∥
2

(27)

and is thus dependent on the λc scalars which are values without meaning.
Any nonzero scalar multiplication of both sides of the expression in Equation
5 will yield a new λc but still satisfy the equation. This error is thus not
geometrically meaningful and the solution is not the optimal for the problem.
Although there are many algebraic ways to solve the problem based on Gröbner
basis [58] [35], bundle adjustment is a modern iterative method used to find
the optimal solution. In bundle adjustment the squared L2 reprojection error
is minimized which yields the most desired solution. If the measurement errors
are normally distributed, independent and have constant standard deviation
this results in the maximum likelihood estimation. The probability distribution
of the mean over several independent errors can be expected to converge to a
normal distribution when the amount of variables increase [22]. Define Xm

as the position in R3 of an unknown point m ∈ {1...M}. To minimize the
reprojection error of all points in all cameras Equation 15 is used again with
the minimization matrix defined as

O =
[
Q1 Q2 ... QF X1 X2 ... XM

]
(28)
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M is the number of unique unknown points, which is a subset of all N points.
If the environment is static and the robot has enough views of points, known or
unknown, to get the relative transformation between the robots locations the
combination of all the generalized cameras in the different locations can be seen
as a single generalized camera and thus

M < N − 4 (29)

is required to solve the position of all unknown points. The minimal case to
find relative transformation between two poses of generalized image devices are
6 point correspondences [66]. This number is reduced if the transformation is
limited to three degrees of freedom.

The non linear least squares is sensitive to outliers because of the thin tails
of Gaussian distributions [71] and it is thus important that the data points is
filtered for outliers before optimization or that an other robustness improving
method is used [31].

2.5 Position feedback from roof mounted cameras

The roof mounted cameras are used to acquire non drift prone position estima-
tion of the robot. The detection of the robot is done by identifying two flashing
LEDs on top of the robot, hereafter called the beacons. The view from the
cameras have a strong perspective warp of the floor but can be calibrated using
a simple model. The robot is known to travel in the plane of the floor which is
why a single camera is enough to find the full pose of the robot.

Given two arbitrary planes in R3 it is possible to calculate a transformation
matrix from one plane to the other if enough correspondence is known. The
projective transformation consist of a similarity transform, an affinity and a
projectivity. A transformation from R2 to R2 is done by multiplication between
the homogeneous coordinate and a 3×3 matrix. Transformation in the opposite
direction can easily be done by multiplication with the inverted matrix. If
several matrices are to be combined they can simply be multiplied together to
form a new matrix of the same dimension and properties.

2.5.1 Finding homography transforms

The correspondence can consist of points, lines or conics known in both planes.
Given a homogeneous coordinate in the cameras Euclidean image plane, ρ =
(u, v, 1)T , and a 2D-position χ = (x, y, 1)T in the plane parallel with the floor
at the height of the robots beacons the relationship can be written

χ ∝Hρ (30)

or by introducing a scalar λ which represent the arbitrary scale factor

λχ = Hρ (31)
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where H is a 3×3 matrix called the homography matrix. Rearranging Equation
31 to the form Ah = 0 using Direct Linear Transform as before results in




−u1 −v1 −1 0 0 0 x1u1 x1v1 x1

0 0 0 −u1 −v1 −1 y1u1 y1v1 y1

−u2 −v2 −1 0 0 0 x2u2 x2v2 x2

0 0 0 −u2 −v2 −1 y2u2 y2v2 y2

...
...

...
...

...
...

...
...

...
−uN −vN −1 0 0 0 xNuN xNvN xN

0 0 0 −uN −vN −1 yNuN yNvN yN







h1

h2

...
h9


 = 0

(32)
which can be solved using singular value decomposition in the same way as
Equation 23 to 26. The approximative nullspace given by h can be reshaped
to the 3 × 3 matrix H. Because of the homogeneous coordinates, H is up
to scale and thus has exactly eight degrees of freedom. Each point correspon-
dence results in three new equations but also a new unknown scale factor, thus
the number of points required to find the homography matrix, with the scale
invariant considered, is given by

3N −N ≥ 9− 1⇔ N ≥ 4 (33)

2.5.2 Evaluating overlapping camera homography

If several roof mounted cameras are partly or fully overlapping and set up with
a homography mapping to the same plane the calibration error between the
cameras can be calculated. Equation 31 explains the transform from one camera
to the calibrated plane. Based on this we find the projection from one camera
to the other. Let ρa be the detected point in camera a, χ the calibration points
true 2D position in the plane and ρ′b the point projected in camera b.

ρ′b ∝H−1
b χ, χ ∝Haρa ⇒ ρ′b ∝H−1

b Haρa (34)

the symmetrical error between I cameras can thus be described as

∑

i=1...I
j=1+I−i
i 6=j

1

2I

(∥∥ρi −H−1
i Hjρj

∥∥
2

+
∥∥ρj −H−1

j Hiρi
∥∥

2

)
(35)
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Figure 7: A projection from one cameras image plane to another plane is de-
scribed by the homography matrix. If two cameras projection to the same plane
is known the projection from one camera to the other can easily be calculated.

2.5.3 Improving homography through bundle adjustment

Just as discussed with the linear triangulation this combination of Direct Linear
Transform and Singular Value Decomposition results in a suboptimal solution
because of the geometrically uninteresting character of the optimized quantity.
A better solution can be achieved by utilizing this method only to yield an initial
guess of the homography for iterative bundle adjustment. The parameters of the
homography matrix can be included in the optimization matrix when the camera
relative pose calibration is done. Still using Equation 15 the optimization vector
in Equation 18 is extended to

O =
[
{SCCO

1 }T , {SCCO
2 }T , ..., {SCCO

F }T , {SCCC
1 }T , {SCCC

2 }T , ..., {SCCC
C }T , r, Ĥ

]

(36)

where Ĥ = (H1, H2, ...,H8R) contains the element one to eight of all R roof
cameras’ homography transformation matrices. Because of the scale invariance
in the homography matrixH, Ĥ has only eight elements from each homography
matrix while Hr,9 is fixed to e.g. unit value.

2.5.4 Finding beacons relative positions

After finding the optimal solution to Equation 32 for each roof mounted camera
a point i with 2D coordinates χi can be reprojected into the camera r’s image
coordinates ρ̃i,r according to

λi,rρ̃i,r = H−1
r χi (37)

Following the structure from the optimization problems earlier in the report
the homogeneous transformation matrix TCCO from the robots camera sphere
center to the world coordinates can be assumed known. Lets now define a
new coordinate system called the beacon center, with a transform TBCO to the
world coordinates. Origin of this coordinate system is placed in the plane of
the beacons, i.e. the plane for which the homogeneous matrices are calibrated.
Each beacon, i, can now be defined in the origin of their own coordinate system
with the transform TBiBC to the beacon center. Given that each transformation
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matrix is defined as

T j =

[
Rj tj

0 1

]
and {Rj}−1 = {Rj}T (38)

the world coordinates for beacon i can be calculated as

tworld
i = −

(
RBCORBiBC

)T (
RBiBCtBCO + tBiBC

)
(39)

The beacons are expected to be located in the calibrated plane and assuming
that the world coordinate system is defined such that the floor is parallel with
the x-y plane Equation 37 can be expanded to

λρ′r,i = H−1
r

[
I2x2 0
01x2

1
a

]
tworld
i where a = (0, 0, 1) · tworld

i (40)

I2x2 is the 2×2 identity matrix and 01x2 is an 1×2 array of zeros. In this project
two beacons are used, the center to center distance is measured manually to dcc

and the beacons center is defined as the midpoint between them with the z-axis
parallel to the line going through both beacons and facing the robots direction.
Their position in the beacon center coordinate system is thus

bBC
front = (0, 0,

dcc

2
)T and bBC

rear = (0, 0,−d
cc

2
)T (41)

Equation 39 is thereby reduced to

tworld
i = −

(
RBCO

)T (
tBCO + bBC

i

)
, i ∈ I = {front, rear} (42)

With this knowledge of how to reproject the beacons to the roof camera images
the cameras relative pose calibration from Equation 15 can now be extended to
include the calibration of the beacon center in relation to the cameras

argmin
O

F∑

f=1

( C∑

c=1

N∑

n=1

vf,c,n
∥∥x̃f,c,n − x′f,c,n

∥∥2

2
+

R∑

r=1

∑

i∈I

vr,i,f
∥∥ρ̃r,i,f − ρr,i,f

∥∥2

2

)

(43)

2.5.5 Using pose estimation to locate point clouds

With two beacons on the robot the full 2D pose, i.e translation and rotation,
can be found. Multiple roof cameras may or may not overlap to average out
detection noise. The method for locating points in a point cloud can now be
done with the same minimization as in Equation 43 but with the optimization
vector described in Equation 28. The bundle adjustment consist of the same
optimization regardless if the point cloud is totally unknown, partly unknown or
fully known and no matter if the roof cameras have located the beacons or not.
Differences appear only in the initial guess of robot pose. If at least one roof
camera detects the robot its estimation can be used as initial guess of heading
and position, otherwise as before an arbitrary guess is used which might result
in a false minimum during bundle adjustment. How this problem is avoided if
no roof camera readings are available is described in the next chapter covering
use of the robots relative movement.
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3 Deduced reckoning

Deduced reckoning is a method used to estimate position and heading. In the
robot used in this project pulse encoders mounted in the wheels measure the
amount of rotation. By integrating the rotation, the movement can be calculated
as the robots rotation and the distance traveled when the diameter of the wheels
and distance between left and right wheel are known. By initializing the first
location to either a known pose or to the zero vector all thereafter following
poses can be estimated. Noise and errors in measurements are integrated and
thus the error in pose estimation increases with the distance traveled, this is
called drift. The drift can be corrected by looking at the relations of spatially
fixed points seen from multiple locations. Especially a closed loop, where some
of the points seen from the first location also is seen from the last location is
good and can eliminate the drift altogether.

3.1 Chain method

The actual path traveled between the locations used for mapping is disregarded
and the move between two on each other following poses can be described as a
distance, ∆, along a straight line specified by an angle, α, from the last heading
together with a post move rotation specified as an angle γ measured from the
heading at the last location. By using this chain-method which minimizes the
error distance and angles form the last location instead of distance and angle
from the origin or first location the effect of the drift is minimized.

Figure 8: The deduced reckoning can be simplified to a chain where the move
between two poses is described by three parameters, the shortest distance be-
tween poses ∆, the angle between last pose and direction of movement α and
the angle between last pose and current pose γ. Red line symbolizes actual
movement, dashed red line is the shortest distance between locations.
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3.2 Extending world estimation equation

The cost function used to find the most probable locations of the robot and the
price labels can now be modified, based on Equation 43. Let’s define di,j =
(∆i,j , αi,j , γi,j)

T as the three parameters describing the move from location j to

i estimated with the deduced reckoning and d̃i,j as the corresponding distance
and angles calculated from the estimated poses of the robot. The optimization
vector O is the same as described in Equation 28 containing the poses of the
robot and the location of the shelf labels. Including the error between the
measured and expected parameters for deduced reckoning the cost function can
be written as

argmin
O

(
a

F∑

f=1

( C∑

c=1

N∑

n=1

vf,c,n
∥∥x̃f,c,n − x′f,c,n

∥∥2

2

+

R∑

r=1

∑

i∈I

vr,i,f
∥∥ρ̃r,i,f − ρr,i,f

∥∥2

2

)

+

F∑

f=2

∥∥∥
(
d̃f,f−1 − df,f−1

)
◦ (b, c, d)T

∥∥∥
2

2

)
(44)

Where the ◦ operator represents the Hadamard product, also known as entry-
wise multiplication. Weights a, b, c and d are introduced as a result of the use
of different units.

3.3 Estimating weights and unit correspondence

Reprojection error is measured in pixels while the deduced reckoning is measured
in world units, millimeters and radians. There is no straight forward way to
calculate the weight factors because the world units maps to a different amount
of pixels in different cameras and in different locations in a cameras image.
Different sensors also have different amount of measurement error which should
affect the choice of weights.

A way of doing an estimation of the unit correspondence is to take the
average scale factor of the mapping between the calibrated plane where the
robot moves and its projection in the roof cameras. To do this lets define
the point a in the calibrated plane as a = (x, y, 1)T and further two points
one world unit away from a along perpendicular axes, b = (x + 1, y, 1)T and
c = (x, y+1, 1)T . As before R is the total number of roof mounted cameras and
Hr is the homography transformation matrix from camera r to the calibrated
plane. Let’s also introduce Ar as the area of the region of interest in the
calibrated plane seen by camera r.

a

b
=

1

R ·Ar

R∑

r=1

∫∫

Ar

‖a− b‖2 + ‖a− c‖2∥∥H−1
r a−H−1

r b
∥∥

2
+
∥∥H−1

r a−H−1
r c

∥∥
2

dxdy (45)
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To avoid calculating the integrals the area can be discretized into a point set in
R2 and calculated as the average of a double sum.

The weights also represent the trust in each measurement. It can be ex-
pected that the camera detections have considerably higher accuracy than the
deduced reckoning even if the resolution normalization is performed according
to Equation 45. The trust has to be either estimated or measured. By mea-
suring the standard deviation for each sensor and dividing the weight constants
with this number good weight factors can be achieved. If the standard deviation
approach is taken then there is no need to perform the resolution normalization,
if the ratio is not of special interest.

3.4 Estimating increasing parts of the world

In the case where the drift is of such a magnitude resulting in false solutions
because of local minima, it can be required that locations of the robot are
estimated using increasing subsets of all used locations to yield more accurate
initial guesses. This can be achieved by running the optimization F tot−1 times
where F tot is the total amount of locations from where the mapping has been
done. By defining L as the number of locations used the optimization can be
run with the locations f ∈ {1...L} where L is decided each optimization cycle as
L ∈ {2...F tot} and the initial guess of the pose for location f is the estimation
from the previous optimization if f < L and L > 2 otherwise the estimation
from the deduced reckoning.

4 Detecting flashing LEDs

The robots beacons consist of two LEDs flashing, each with a constant frequency.
The digital price labels are also detected by their flashing LEDs. These consist
of a flash with two main peaks in the frequency spectrum. The LEDs are
detected by finding triggers based on high temporal derivative change in the
light levels using a sequence of images. The triggers are then filtered by their
frequency containment to find flashing with the correct frequency and suppress
other detections.

4.1 Segmentation of high temporal derivative areas

Each camera frame is examined for pixel regions with fast changing light levels.
This is done by image segmentation based on each pixels derivative in the time
domain. The time derivative of a pixel pi(t) at location i at time t is the change
in intensity divided by the change in time

dpi
dt

= lim
∆t→0

pi(t+ ∆t)− pi(t)
∆t

(46)

19



This can be estimated, for pixel pi,f where i is the image coordinate and f is
the frame number, using the backward difference

dpi,f
df

≈ pi,f − pi,f−1

λfps
(47)

where λfps is the time between the frames. The segmentation is achieved by
thresholding the derivatives magnitude for each pixel in the image and assigning
new values to the segmented images pixels si,f given by

si,f =

{
|dpi,fdf | > tdp : pi,f

else : 0
(48)

The segments are filtered on morphological parameters such as the segments
total area in the frame and the segments length to area ratio. The search and
filtering of these regions are further described in the 6 Implementation chapter
of the report. Such a pixel region detected will from now on be called a trigger.
A trigger d in a frame is described by its centroids image coordinates, u, v, and
the frame number,f , it appeared in

d = (u, v, f)T (49)

Let the set Dp contain each trigger extracted with a position label p, as later
described, from all frames

Dp = {d1,d2, ...,dI}, Dp ⊆ F p ⊆ F (50)

where F p is the set with all possible triggers with this position label and F is
the set with all possible triggers anywhere in any frame. If the L2 norm of the
difference in image coordinates of two detections is smaller than a threshold, td,
they are assigned the same position label p, if d̃a denotes the two first elements
in da, i.e the image coordinate

∥∥∥d̃a − d̃b
∥∥∥

2
≤ td ⇒ pa = pb (51)

This labeling of the positions where a certain spread is allowed can be seen as
an agglomerative hierarchical clustering using centroid linkage. The exception
is that two clusters walking towards each other never can be joined because the
clustering is only performed over the new points as they get detected. It could
also be seen as k-nearest neighbors with k = 1 and the extra condition that a
distance above the threshold td creates a new cluster.

4.2 Frequency spectrum filtering

The set Ep contains rising edges with position label p. A rising edge ej is defined
as the frame number, a, where a trigger is detected in frame a but not with the
same position label in the previous frame, a− 1

Ep = {e1, e2, ..., eJ}, Ep ⊆ D̂p (52)
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where D̂p is the set containing the last elements, fi, from each vector di in Dp.
The time between two rising edges can now be calculated as

tb,a =
eb − ea
ffps

(53)

where ffps is the number of frames per second. A vector with the time passed
between each rising edge in location p can thus be created

T p = {t2,1, t3,2, ..., tJ,J−1} (54)

When the frequency spectrum of the flashing lights is known a cost function
with a minimum in λflash = 1/fflash can be defined where fflash is the expected
frequency of the light flashing. One such cost function is an upper limited
triangular wave described by

cλ(t) = min(a,max(−kt+m1, kt+m2))

k =
m1 −m2

2λ

(55)

Figure 9: Left diagram represents a cost function with a minimum in f = 5Hz,
right image is the minimum value of a cost function with a minimum in f = 5Hz
and one with a minimum in f = 1Hz. The minimum at f = 5Hz is represented
by k = 10 and the minimum at f = 1Hz by k = 5.

The choice of parameters m1 and m2 will decide the tolerance of noise in
measurements. If the spectrum is known to contain multiple local maximums
in the frequency range several cost functions can be combined as

cλ1,λ2,...,λi
(t) = min(cλ1

(t), cλ2
(t), ..., cλi

(t)) (56)

The sum of the cost function applied to each element in the time vector T p
yields a scalar cost value which indicates the flash characteristics similarity to
the expected pattern. The triggers can be assumed to indicate a true detection
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in the location p if the scalar cost value is below a threshold, tcost, and the time
vector T p’s cardinality is larger than a value smin

∑

T p

cλ1,λ2,...,λi
(ti) < tcost and T p > smin ⇒ p ∈Dconf (57)

where the vector Dconf includes the location of all confirmed flashes.
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5 Navigation and route planing

If the mapping should be possible without human input the robot must be able
to navigate in the stores autonomously. Acting based on the environment is
something that all lifeforms do. Simple creatures often do this by stimulus-
response mechanism while more advanced creatures plan ahead. For the in-
terested reader the book by Balkenius, Christian about natural intelligence
in artificial creatures [27] is highly recommended. Although simple stimulus-
response models could be used using as an example the robots distance sensors
and tactile sensors to move around more or less randomly more advanced algo-
rithms will increase the speed and performance of the objective. By being able
to predict the future and plan ahead the robot can optimize its path through
the environment.

Seen as a planning problem this situation differs from the common case
where all information is previously known. The layout of the environment is
not fully known at the time of planning and the planning does not need to fully
finish before the actions are started. Using these assumptions the planning
can be done without overly constrained plans. Research has been performed
on planning systems not only with a belief, desire and intention but also the
ability to reflect upon its internal representation of these states [46]. During
the mapping of the environment more and better information will be available
as time moves on. Based on this there is no need to take a decision before it
actually needs to be taken. Instead of making guesses of the whole path to take
based on inadequate information only the next move and the decisions that it
is dependent on may be taken.

5.1 Force field navigation

A nontrivial decision is where to define the boundaries of what decisions are
needed to decide the next step. If too little information is included the possibility
to get trapped in a dead end is higher. In this project the path is not optimized
to be as short as possible but rather to include the best views possible during
as few stops as feasible. Two positions yielding measures with low delta angles
or in other way containing little information should be avoided. In Figure
10 a) three possible positions are visualized, two of them yielding little new
information because of the weak angles. The angles to maximize is the angle
between current locations observation and next locations observation of each
label and the angle difference of the observations of all labels from the next
location as seen in Figure 10 b).
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(a) With the current location Pi a number of moves
are possible. The viewing angles of the labels will be
different. At location PC

i+1 the robot camera only see
two price labels, while the others are collinear.

(b) The angles to be opti-
mized are the viewing an-
gles seen from the robots
next position, β, and the an-
gles from each label to the
robots current location and
the next location, α.

Figure 10: The planning of the robot path can be done by maximizing viewing
angles to the digital labels. The price labels are represented by the red dots and
the current robot position and possible moves as gray circles.

With the current position of the robot P i, J price labels with positions
given by pj and the intended next position P i+1 the internal angles, β, can be
calculated as

βj = ∠(P i+1 − pj+1)− ∠(P i+1 − pj), j ∈ {1...J − 1} (58)

where ∠(v) represent the angle of the vector v. The external angles, α, can be
decided by

αj = ∠(pj − P i+1)− ∠(pj − P i), j ∈ {1...J} (59)

Two models to represent the planning in a map are common, either as a graph
search or as a potential field. An example of a force field using the potential
field method can be seen in Figure 11 d) where the arrows points in the direction
maximizing the angles. Heat-maps where the color represent the positions’ root
mean square of all angles are represented in Figure 11 a) to c). Every pixels
color is calculated as

c =

√√√√
J∑

j=1

α2
j +

J−1∑

j=1

β2
j (60)

A heat-map representing the goodness of each position is created by calculating
the c-value for each and every position. Using the same layout as in Figure 10
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a) the heat-maps for internal angle β, external angle α and the sum of them
can be found as visualized in Figure 11 a)-d).

(a) RMS of internal angles, i.e. the
robot’s difference in angle to the differ-
ent labels.

(b) RMS of external angles, i.e. the an-
gle between each labels ray to the robot’s
current position and the next robot po-
sition.

(c) RMS of angles from a) and b) com-
bined visualizing the total goodness of
each position.

(d) The force field indicating the deriva-
tive of the total sum of squares. The
robot should follow the arrows as much
as possible when planning the route.

Figure 11: Heat-map and force field maximizing the viewing angles to the labels
using the positions as in figure 10 a).

5.2 Prefixed line navigation

A simpler approach resulting in easier to predict moving patterns is to use a
predefined path. To simplify the use and installation of the robotic system
the path can be defined by applying a high contrast line on the floor which
the robot is supposed to follow. Many line following algorithms have been
proposed but many of them are sensitive to noise or textures in the background
area. Many competitions are held worldwide in line following where speed and
algorithm robustness is tested. Usually the line following is done using a set
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of reflex detectors resulting in an ultra-low resolution one dimensional image of
the line under the robot. During the time of this project a robust technique
utilizing the already installed cameras on the robot has been developed. The
novel approach developed for line detection using visual detection developed has
also been described in a paper submitted for publication [42] during the time of
the project. The new algorithm developed is based in the fundamental steps of
Stroke Width Transform [41]. The Stroke Width Transform turned out to be a
revolution of the OCR text detection in natural images when it was published
in 2010.

5.2.1 Defining a line

In this project the algorithm has been modified to be considerably less process
demanding to allow real time analysis at high frame rate. Two assumptions
inspired from the Stroke Width Transform text detection algorithm have been
used to detect the line. A line is bordered by a high derivative stroke on each
side, the strokes are assumed to be on approximately the same distance from
each other, i.e. the width of the line is constant. The gradients of the two
borders are assumed to have adverse directions, i.e. the borders are parallel to
each other and the background on both sides of the line are either brighter or
darker than the line itself.

In Figure 12 a) and c)-d) it can be seen that simply thresholding gradient
magnitude in the image can in some cases be enough to find a dark line on
a brighter colored background. The same is true for the inverted case where
the line has a brighter color than the floor. In many cases other objects and
shadows can be hard to differentiate from the line using only this technique.
Combining this with filtering of stroke width and edge gradient direction can
however make the method robust. The stroke width is the distance between the
two opposite peaks of the derivative. This can be assumed to be approximately
the same along the length of the line if the perspective transform is taken into
account. In Figure 12 b) the gradients magnitudes and direction can be seen.
The gradient on opposite sides of the line can be seen to be at approximately
180◦ angle in relation to each other. The line will from hereon be assumed to
have a darker color than the surroundings all tough the opposite case can be
analyzed by just moving along the positive direction of the gradient instead of
the negative. It is also possible to detect both light and dark lines using this
proposed algorithm by running it twice, once in each direction.
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(a) Closeup of a black line on a slightly
textured floor board. Red line indicating
perpendicular axis to the line.

(b) The gradients can clearly be seen
to point in approximately adverse direc-
tions on the opposite sides of the line.

(c) The derivative along the red axis in
image a) for red, green and blue channel.

(d) Thresholded derivative clearly indi-
cated line borders.

Figure 12: A dark line on a lighter colored floor board can easily be found using
the gradients magnitude.

5.2.2 Top view perspective transform

A property of the perspective transform is that parallel lines do not always
project to parallel lines. In the case where the camera’s image plane is not
parallel with the ground plane there will be a perspective transform, seen as the
depth in the image, resulting in the edges of a parallel line going towards the
horizon being non parallel. Using the assumption that the edges of a line are
parallel a top-down view must be used.

By calibrating the position of the camera in relation to the floor plane in the
same manner as described in section 2.5.1 Finding homography transforms the
top view can be calculated by pixel remapping using the homography matrix,
as seen in Figure 13. The calibration can be done using a chessboard pattern
placed in the ground plane.
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Performing the calculations in the top view image ensures that the width
of the line does not get affected by the perspective transform as the lines goes
towards the horizon line.

(a) Raw image from robot camera feed.
Chessboard pattern is used to find
perspective warp (homography) from
ground to image plane.

(b) Undistorted and perspective
wrapped image from raw image in (a).
A top-down view of the calibrated
plane is achieved.

Figure 13: Frames from robot camera feed are subjects to a distortion and a
perspective warp.

5.2.3 Finding the lines

The lines can be found by first calculating the gradients and their magnitude
in a frame. Pixels with a gradient magnitude above a threshold value are in
this stage assumed to be pixels on the lines borders. These are split into two
groups: start pixels and end pixels. The first group is defined by a negative
value in column-wise gradient. For each start pixel an iteration in the image is
performed. If the start pixels gradient is given by α then dark lines on brighter
background are found by iterating along the direction of −α while brighter lines
on darker background are found by iterating in the opposite direction, along
α. The iteration is performed until a (non-zero) end pixel is reached. The
moved distance and the angle between the start pixels gradient and the end
pixels gradient is kept, these are the stroke width l and the stroke border angle
difference δ
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Figure 14: By following the border pixel in the opposite direction of its gradient
the opposite bordering pixel is found. The angle δ can be assumed small if the
lines edges are approximately parallel.

If the start pixel’s gradient direction is α and the stop pixels gradient di-
rection is β then δ = α − π − β. The angle δ can be assumed to be small if
the borders of the line is approximately parallel. If the method is applied to
every start pixel in the image an output image is created where the pixels in
the line segments are color coded with their stroke width. Some outliers will
be present but the true lines are characterized by their approximately constant
stroke width and thereby color coding. For each pixel at (i, j)T in the output
image marked with a stroke width value li,j the number of neighbors with ap-
proximately the same value is counted. Only neighbors within a kernel with side
length d, satisfying d ∈ {2N+ 1}, around the pixel are counted and a maximum
ratio r between the two pixels values are allowed. Each pixel can thus get a
probability score vi,j defined as the normalized number of neighbors fulfilling
the ratio test. If P t is the set of all neighboring pixels fulfilling the criteria and
(k, l)T are all pixels contained in the kernel around (i, j)T then

∀li,j ∈ P t :
1

r
≤ lk,l
li,j
≤ r,

k ∈
[
i− d− 1

2
, i+

d− 1

2

]
, l ∈

[
j − d− 1

2
, j +

d− 1

2

] (61)

The probability score for each pixel is then defined as the normalized number
of elements in P t

vi,j =
P t

d2
(62)

A similarity measure between pixels can be calculated in four dimensions
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where each pixel is described by the vector pi = (i, j, l, γ) where i, j is the
image coordinates in the top view image, l is the stroke width assigned to the
pixel and γ is the angle of the stroke covering the pixel. The similarity of two
points is calculated as

sa,b =
1

‖pa − pb‖2
(63)

A line can also be assumed to be considerably longer than its stroke width.
This can be used to define that the ratio of the distance between the two points
furthest apart and the mean stroke width should be above a threshold tl:w. If
p̃i is the two first elements of pi, i.e. the image coordinates, J is the set of all
strokes included in the line segment and Swidth is the mean stroke width within
the current line segment then

max
a,b∈J

(‖p̃a − p̃b‖2)

Swidth

> tl:w (64)

should be fulfilled if the line segment should be considered as a line instead of
noise. To improve the calculation speed the distance between two points can be
simplified to the approximation

d =
√
dx2 + dy2 ≈ max(dx, dy) (65)

If the image contains multiple line segments that are not connected they need
to be clustered using a cluster algorithm, a method for this is described in the
next section.

5.2.4 Internal representation and line clustering

When the top down view of the line is known in the robots local coordinate
system several views can be stitched together to a complete map in a fixed
coordinate system. If the distance moved by the robot during one image frame
is shorter than the distance seen by the camera the views of the lines will be
overlapping. Many algorithms exist for registration of point clouds which can
be applied in this case. A very common approach is Iterative Closest Point
[30] where the transformation of two point clouds is calculated by finding the
translation of the first cloud that will minimize the sum of the squared distances
between points in the two clouds. Several implementations exist such as the
improvement proposed by Zhang, Zhengyou [74] to speed up calculations and
reduce impact of outliers.

Given the iterative approach a better solution can be calculated faster and
with less probability for false minimums if some a priori information is known.
Such information can be achieved by using the deduced reckoning from the
odometers on the robots wheels. The resulting transform between the two point
clouds does not only allow the construction of a complete map of the environ-
ment but also yields a good estimation of the robots movement. In Figure 15
the stitching of two point clouds representing a partially overlapping top-down
view of a line is visualized.
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If several non continuous lines are seen in the image they need to be differ-
entiated. This can be done using clustering. The robot needs to know in every
frame which line to follow and this can be done using the transform gotten from
the point registration in combination with the a priori knowledge of which line
it followed in the last frame. When the robot knows which line it was following
in the last frame this transform can be used to find the corresponding line in
the current frame.

Using the descriptive vectors defined in Equation 61 the points can be
grouped into segments using a clustering algorithm. Each segment represent
one view of a continuous line. The lines form long, narrow segments that can
partly encircle each other, thus center-based algorithms, such as k-means [70],
will not work. A density based algorithm such as DBSCAN [72] is instead
proposed. DBSCAN will not cluster all elements but instead filter away low
density areas as outliers, a functionality which is appreciated in this context.
Many disturbances in the image will be detected and some will pass through the
filtering based on the stroke width of the closest neighbors described in 5.2.3
Finding the lines. The noise left will have inconsistent direction in relation to
their neighbors and will thus be removed as outliers.
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(a) Two top-down views of pixels de-
tected on two partly overlapping lines.

(b) View of the first line in a local co-
ordinate system

(c) View of the second line in a local co-
ordinate system.

(d) Both lines transformed and stitched
together using Iterative Closest Point on
the overlapping sector.

Figure 15: By using a registration algorithm such as Iterative Closest Point
(ICP) two views of lines can be stitched together to a complete shape. Figure
a) shows the true relative positions while d) shows the result of stitching based
on the points in Figure b) and c).
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6 Implementation

The following section covers all hardware and software designed during the
project to allow evaluation of the methods proposed. First the construction of
the mobile robotic platform is described. The purpose of the platform is to be
able to scan the store environment visually using the omnidirectional assembly
of cameras. This needs to be done from several locations which is why the
robot needs to be able to move but also have spacial awareness. No focus have
been aimed toward constructing a robot suitable for industrial use but instead
to allow easy experimentation. In the final implementation designed for flow
production the focus should be reduction of cost, dependability and ease of
use. The robotic platform designed in this section is made for modularity, easy
modification and use of predesigned and available components.

The experimental environment designed and used during the project is also
explained. The main focus is to replicate the environment in a retail store
and evaluate problem prone areas. The environment is built in a room at
Cognimatics office in Lund. The system has also been evaluated in a real store
environment. The focus of the real store test was to investigate the impact of
larger loops in the navigation and position estimation and possible problems or
drawbacks with label detection in crowded environments.

Implementation of custom software is done in several platforms to allow all
parts of the network based system to cooperate. Custom software is imple-
mented in the cameras mounted on the mobile platform to detect flashing price
labels and stream video, in the mobile platforms computer to allow remote con-
trol and telemetry, in the control center server to bind processes together and
implement a Human Computer Interface (HCI) using a Grapical User Interface
(GUI). Other areas such as the Pricer Electronic Shelf Label system is also com-
bined with custom software. Some software was designed and used as tools to
create other software and does not take part in the final use of the system. One
such software is the Data analytics and detector evaluation software described
in the section which was used to collect video sequences from the robot and
evaluate the different versions of the label detectors on the exact same data to
value repeatability.

6.1 Experimental hardware platform

The robotic platform built in the project is based on an IRobot Roomba 621
robotic vacuum cleaner [8]. The robot has been extended with hardware re-
quired for the project including but not limited to

1. Four Modcam [13] wide angle cameras

2. Two LED beacons flashing with different frequency

3. Raspberry Pi 3 [19] compact computer

The robotic vacuum cleaner was chosen as a base since it combines the motors,
rotary wheel encoders and proximity sensors with an open serial interface. The
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serial interface allows full control of the motors and all sensor data is available
on request or as a constant stream. The serial protocol was discovered not to
be compatible with 4 volt signals and thereby neither the 3.3 volts used by the
Raspberry Pi. The Raspberry Pi input pins are not tolerant with 5 volt outputs
such as those on the robot’s interface. To interface the robot with the Raspberry
Pi a FTDI chip [6] was used to add an UART serial port to the USB bus. The
data lines of the FTDI chip was interfaced with the robot by using inverting
connections with NPN channel transistors according to Figure 16.

Figure 16: Connection interface between Raspberry Pi and Irobot Roomba
Open Interface using double inverting transistor connections to transform sig-
nal voltage. Two LEDs used as beacons for robot location estimates are also
connected to the Raspberry Pi I/O.

From the data sheet for the BC547 transistors used [3] the characteristics
can be found

hFE,min = 110 UCE,sat = 90mV UBE,sat = 700mV

Setting the values
R2 = R4 = R8 = 1kΩ

yields collector currents given by

Ic =
Vdd− UCE,sat

R
⇒

Ic,Q2
= Ic,Q5

=
5V− 90mV

1kΩ
= 4.91mA

Ic,Q3
=

3.3V− 90mV

1kΩ
= 3.21mA

Using the h-parameter model the needed base current can be calculated as

Ib ≥
Ic

hFE,min
⇒

Ib,Q2
= Ib,Q5

≥ 4.91mA

110
= 44.6µA

Ib,Q3
≥ 3.21mA

110
= 29.18µA
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the base resistors are then specified by

Rb ≤
Vdd− UBE,sat

Ib
⇒

Rb,Q2
= Rb,Q5

≥ 5V− 700mV

44.6µA
= 96.4kΩ

Rb,Q3
≥ 3.21mA

29.18µA
= 147.3kΩ

To allow fast saturation and less sensitivity to noise all base resistors can be
chosen to Rb = 10kΩ this will result in base-emitter currents given by

Ib =
Vdd− UBE,sat

Rb
⇒

Ib,Q2
= Ib,Q5

≥ 5V− 700mV

10kΩ
= 0.43mA

Ib,Q3
≥ 3.3V− 700mV

10kΩ
= 0.26mA

The LEDs are driven directly from the Raspberry I/O pins. The SoC is able to
source a recommended maximum of 16mA per I/O pin and thus the resistors
to the LEDs are given by

RLED =
UIO − ULED

ILED
⇒ R6 = R10 =

3.3V− 1.8V

16mA
= 93.75Ω ≈ 100Ω

The serial receive and transmit lines have double inverters to turn the signal
back to non inverted state, this is because the UART module does not support
inverted signals. Device detect can be inverted in Raspberry Pi software and
therefore it is constructed with only a single inverting coupling. The inverting
transistor modules could be replaced by opto-isolators which might be both
easier to implement and a more robust solution. The beacons used to detect
the robot in the roof camera images were build by connecting two LEDs to
the Raspberry Pi’s I/O pins. The LEDs are mounted on a black non reflective
surface to avoid detection of surface reflections. The LEDs are set in software
to flash at different frequencies so that the front and rear LED can be identified.
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Figure 17: The robotic platform constructed during the project is seen in the
pictures. On the top of the robot the two red beacons are seen, flashing at
different frequency. Under the beacons are four Modcam wide angle cameras
mounted in an aluminum frame. A Raspberry Pi 3 with LCD screen, two
battery packs, switching regulator, converter board and robotic vacuum cleaner
base can also be seen.

The cameras are mounted on an aluminum profile structure to achieve as
close as perpendicular angles to its neighbors and the horizontal plane as pos-
sible. The Raspberry Pi has been equipped with a 7 inch LCD screen to allow
instant feed back from software. Using a switched 5VDC out DC/DC con-
verter the Raspberry Pi and screen are powered by the robots battery. The
DIN-contact on the robot features a voltage output to power external utilities.
This output was found to be limited by a poly-fuse to a far lower current than
what was necessary to power the Raspberry Pi. This was solved by connecting
the power converter directly to the robots battery. However this introduced
problems with the charging. The working theory is that the robot measures
the current drawn from the battery and from its integral decides if there is a
need to charge the battery or not. The result is that drawing current directly
from the battery prevents the robot from initializing the charging cycle as it
is needed. Because of this the cameras were externally powered from two USB
power banks to reduce the current drawn from the robots battery. The result
is several hours battery life for the robot and more than a full working days
battery life for the cameras. The Modcam cameras also includes an internal
battery, albeit the battery life is rather short.

6.2 Environments for evaluation and testing

Two environments have been used for the development, testing and evaluation
of the project. The first is an in-office resemble of a store environment and the
second used for complementary final testing is a warehouse, former food store.
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6.2.1 Experimental environment

In addition to the real store test, described later, the system has been tested
thoroughly in a 10m2 room decorated to resemble a store environment.

Figure 18: Blueprint of the experimental environment used in the developing
and evaluation of the methods.

To match the end environment as close as possible a complete Pricer Elec-
tronic Shelf Label system [17] was installed with 29 shelf labels. The Pricer
system consist of multiple digital price labels, a base station connected to the
network with TCP/IP and a roof mounted transceiver-receiver module con-
nected to the base station. The digital price labels have a screen capable of
displaying graphics and a LED which can be set to flash in a factory predefined
pattern. The labels have 2-way communication with the rest of the system using
infrared light. The labels are spread out in various positions, some on the wall,
some on wire frame shelfs, some vertical and some horizontal. Some Labels are
placed close together in groups to mimic possible placements in a real store.

Figure 19: Example of placement of the labels in a real retail store. Some labels
are close together while some are further apart. Note the horizontally placed
labels in the bottom of the right picture.
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Figure 20: Left image shows example placements in the test room. In the left
upper corner a group of five labels is seen and on the bottom shelf on the right
some horizontal labels are located. Right image shows the mounting of the
Pricer transmitter system. One of the Axis roof cameras can also be seen in the
upper left corner.

6.2.2 Warehouse environment

The real store test has been performed in a 9.5 × 4.4 meter section of a store
divided into five rooms whereof two rooms were used. Two of the rooms have
been equipped with the same Pricer Electronic Shelf Label system as described
earlier in the section. 44 price labels were installed on shelf fronts ranging from
20 to 120 centimeters height. The real store environment is a former village
food store but is today a warehouse. The blueprint of the two rooms used for
testing and the position of the labels are seen in Figure 21.

Figure 21: Blueprint of the part of the warehouse used for testing and evaluation
of the methods. Pricer digital shelf labels are marked as circles.
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6.3 Software

The software is network based and spread out over several nodes. The control
center and graphical user interface are running on a stationary PC using Debian
operating system [5] and communicates with all other nodes. The Raspberry Pi
compact computer on the robotic platform is running Raspian operating system
[20] and, inter alia, collects the sensor readings from the robotic vacuum cleaning
platform to make them available over the network. The Pricer Electronic Shelf
Label server is utilizing Windows operating system [12] and thus runs on a
separate server PC. The Modcam cameras are running a distribution of the
Android operating system [1] and the detection of flashing labels are done in
each cameras software. Most of the software is written in Java [9] with the
complement of native code using Java Native Interface.

6.3.1 Modcam camera unit

The software in the Modcam cameras is written in Java language for the Android
operating system. At start-up the camera is automatically connecting to the
control center server and goes into a passive state waiting for commands. The
automatic start-up of the program is achieved by initializing a broadcast receiver
listening to the boot completed action and thereafter start the app as a new
intent. The program sets up a WiFi connection to connect to the local network
and initializes a connection to the control center server through a socket client.
It implements three main modes which can be started, paused and changed
by commands sent from the control center: live image feed, record to memory
card and LED detection with live network streaming. It also allows uploading
of video saved on the memory card and upload of log files. Live telemetry of
information such as battery level and charge current is available using Android
Debug Bridge over WiFi or USB connection.

Images are fetched from native-code methods using Android NDK. Modcam
SDK is implemented in C language and allows a feed of images through a frame
client. The frame client is implemented to allow multiple apps to communicate
with the camera module simultaneously without taking control over it. The
images are fetched in 640x480 8-bit gray scale format.

In live image mode the frames are fetched and sent to the control center
server without modification. Images are non compressed, neither intraframe
nor interframe, resulting in low maximum frame rate. The frame rate is limited
by the transfer rate in the network connection between camera and control
center server.

In record mode the frames are written to the cameras memory card for later
use. A frame is written as a raw data dump, without compression, to a binary
file. Each frame is written to its own data file marked with the date and time
stamp of the frame. When a image upload command is received all images
within the folder are read and sent to the server in chronological order. This
process is rather slow but allows non real time recordings to have significantly
higher frame rate than live video.
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The live LED detection mode finds flashing LEDs in the images and sends
data live to the server. The stream can be set up to include both image data and
detection data or only the latter. Because of the uncompressed images the frame
rate is limited when image data is sent. The image analysis is however done at
fixed frequency in the cameras and the current frame is only sent if the buffer is
not full. During the mapping in this project the robot is not moving during the
cycles. That is why the system can send only the first frame from each camera
and then overlay with the detection data which is constantly live streamed, until
the cycle for one location is finished. The method behind the detection algorithm
is described in the 6.3.1 Detecting flashing LEDs section. The implementation
is based on the OpenCV open source computer vision library [15] using the
OpenCV manager installation for Android operating system.

The detection of flashing LEDs starts with an image segmentation to find
pixel groups with high derivatives in the time space. These areas are found
by first using a Gaussian convolution to blur sharp edges. The kernel is 11x11
pixels with a 5 unit sigma. The current, blurred, frame is subtracted from the
last, blurred, frame and the absolute difference is kept for each pixel. A binary
matrix is created by thresholding the absolute change of the pixels. A pixels
value at image location given by coordinates (u, v)T at the time i can thus be
described as

psegmentation
i (u, v) =

{
d(u, v) < t : 0
d(u, v) ≥ t : 1

where

d(u, v) = abs
(
pblurred
i (u, v)− pblurred

i−1 (u, v)
)

(66)

where p is the pixel value and t the threshold. The position of the contours in
the binary image are found using the method proposed by Suzuki, Satoshi et. al.
[69]. The area of each detected pixel group is calculated using Green’s theorem
[48]. The groups are filtered with upper and lower limit on the area as well as the
maximum length and maximum length to area ratio where the maximum length
is the largest L2 distance between two points on the boundaries. The centroid of
the groups are found using Green’s theorem and the frequency matching score is
calculated using the cost functions presented in 6.3.1 Detecting flashing LEDs.

Images are fetched at 10 frames per second during the analysis. With 10
Hz sampling the Nyquist frequency [49] becomes 5Hz which is the maximum
frequency that the discrete system can sample without introduction of aliasing,
also known as folding. The frequency spectrum of the Pricer digital labels LED
flash consist of a 5Hz and a 1Hz peak. Thus the signal is right at the edge
for what is possible to measure correctly. The reason for the low frame rate
was initially lack of processing power which prevented real time analysis at
higher frequency. Over time the implementation was optimized and the time
consumption running in the cameras CPU is low enough to allow the full 30
fps frame rate. The frequency has however not been increased due to already
good results in the detection of labels. The main reason for false positives
have been seen to be reflections in walls and windows. A LED reflected in a
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surface has the same flash characteristics and thus passes through the detector.
A method to prevent this would be to detect simultaneous flashing and only
keep the brightest source. This would however need to be distributed between
the software running at each camera and would require synchronization of time
between the cameras with considerable precision. Another method would be to
use robust techniques in the the bundle adjustment to find outliers by their high
reprojection error.

Calibration of the cameras was done using 3 radial coefficients and two tan-
gential. It was done using 20 images of a chessboard pattern using both Matlab
camera calibrator app and an algorithm manually implemented in Java using
OpenCV library. The calibration with the lowest reprojection error for each
camera was used. When mixing calibrations using Matlab and OpenCV it is
worth noting that

KMatlab = KT
OpenCV (67)

where K is the camera matrix and distortion parameters, D, in Matlab is
returned as

DMatlab, RadialDistortion = (k1, k2, k3)

DMatlab, TangentialDistortion = (τ1, τ2)
(68)

while OpenCV methods expect them as

DOpenCV = (k1, k2, τ1, τ2, k3) (69)

(a) Uncalibrated image (b) Part of calibrated image

Figure 22: Calibration of wide angle Modcam cameras was done using images
of chessboard patterns.

6.3.2 Data analytics and detector evaluation

In the design process of the detector used to localize the flashing LEDs it is
of high importance that different detectors can be tested and evaluated on the
same data set. To allow this a software used to record video sequences from
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the robot and store them on the local computer was designed. The program
allows record-and-download or live image feed, the latter one at more limited
frame rate. The frames in the saved videos can be played in real time or stepped
through frame-by-frame. Each video stream can be opened in a detector testing
window where the detector, also implemented in each camera’s software, can be
tested locally on the PC. By manually tagging the true locations of digital price
labels the software can automatically evaluate the precision and fault rate of the
detector. Characteristics about the true locations’ flashes can also be extracted
and used to tune the parameters of the detector. The detector can be run in
real time or in a frame-by-frame mode to evaluate every reaction to the changes
between two frames. Detections are presented together with information about
the cost function output used to analyze frequency content. Images can also be
exported as jpeg used among others to calibrate the cameras.

Figure 23: Graphical user interface designed to record and download videos
from cameras and manage locally saved video sequences.
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Figure 24: Graphical interface used to test detection algorithms on repeat-
able data and extract information about flash characteristics. Blue markers
are manually placed true locations of digital labels, red markers are automati-
cally detected displayed together with cost function value. Gray circle marker
indicates typically hard to classify areas, in this case a ceiling light partly hid-
den behind the door post. Right image is unmodified frame. Manual stepping
frame-by-frame is possible to evaluate the detectors reaction to a single frame
change.

(a) Length of the longest side of the
pixel region. Upper is all detections,
lower is detections at true locations.

(b) Area of the pixel regions. Upper
is all detections, lower is detections at
true locations.

Figure 25: The tagging of true positions in the GUI allows extraction of data
comparison between all pixel regions passing through the time derivative thresh-
old and the regions at true label locations only.

6.3.3 Robotic platform server

The Raspberry Pi 3 compact computer has been configured to start a Java
application running the network server. The application communicates with
the robot through IRobots Open Interface [7] implementing the RS232 protocol
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[67]. Communication over the UART was done using the RXTX library [21].
According to the specifications in the open interface a sensor data stream was
set up. The stream can be specified to include just the sensors of interest and
contains a checksum, on top of the checksum specified in RS232 protocol, to
assure no corrupt data. The stream is sent at 66Hz and thus allows fast update
of sensor information. Requesting sensor values individually is slow compared
to the stream and can in worst case give a one second delay before the response
is sent. Because of this an Irobot Roomba model which support streams is
highly recommended for similar projects. The manual for the Open Interface
implemented by the robot is hard to find and only a manual for the 500-series
was found at a third party web page [7]. The robot used in the project is from
the 600 series and this might explain some of the contradictions to the protocol
explained in the following text. Due to what seems like a bug in the protocol the
distance and angle from the deduced reckoning are always zeros when sent in the
stream. This was solved by complementing the stream with manual requests
for those two variables. As soon as an response was received a new request
was sent. This resulted in a bit complex code when the response and stream
might be received in a mixed order. This was solved by comparing the answer
to expected models and thereby being able to classify it as answer on request
or data stream. According to the manual the distance should be in millimeters
and the angle in degrees which does not seem to be the case on the robot used in
the project. The calibrations of rotation and distance resulted in 7.0 units per
millimeter traveled and 0.58 units per degree turned. Furthermore the manual
states that the checksum of the stream is calculated as the 8-bit complement
of all bytes except the header. The 600-series, or at least the robot used in the
project, is including the header in the checksum and thus

Dheader +Nbytes +Did,data,i +Dchecksum mod 255 = 0 (70)

where Nbytes is number of bytes and Did,data,i is the id and data bytes for all
i. The inclusion of the header in the calculation of the checksum seems like an
important feature because of the fact that a broken data line resulting in all
zeros otherwise would yield a correct checksum (0 + 0 + ...+ 0 mod 255 = 0).
This can be avoided by using the expected value of the header instead of the
received.

The I/O-pins on the Raspberry Pi are used to interface with the device-
detect line to the Irobot Roomba and to control the flashing of the LED beacons
used to find the robots position in the roof camera images. The I/O pins are
controlled with the use of Pi4J library [16].

6.3.4 Control center and planning

The control of the mapping process is done in the PC running Debian operating
system. A program written in Java combines a robot controller and telemetry
system with a label detecting and positioning system. The robot controller
implements a graphical user interface displaying live sensor information from
the robot such as battery voltage, charge level and current, obstacle sensor data
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and mode states. A dynamic map is also implemented showing the real time
pose of the robot and its move trace based on the deduced reckoning and the
roof camera detections. The map is visualized with a 500mm grid seen as a
top-down view of the room with the origin marked as a corner in the room.
The control center GUI also allows manual control of the robot which makes it
possible to manually drive the robot using a WLAN connection.

Figure 26: The graphical user interface created to allow 2-way live interfacing
with the robot. Robots position is displayed for each roof mounted camera and
deduced reckoning. Sensor data from the robot is displayed to the left.

The deduced robot pose estimation is calculated in the software, designed
for the robots computer, based on a model of the robot’s mechanics. The pose
estimation is sent to the control center at 50Hz where a trail of the positions is
created. The trail is stored in non volatile memory which allows the mapping to
continue even after an all system shutdown. This makes it possible to map the
premises split into several days or to complement an earlier mapping tour with
more data. The telemetry data and the map can be seen in Figure 26 where the
deduced position and its trail are shown together with trail and pose estimated
from one roof mounted camera.

The label detecting and positioning system implements a GUI allowing con-
trol over the label mapping sequence. A text field allows the user to specify the
product ID of all labels and optionally the real position of it to use as a reference.
Images taken from the four cameras mounted on the robot are displayed with
an overlay of colored circles for all detected labels’ LEDs. The detections can
be marked false by clicking on them with the mouse and thus allowing manual
filtering of outliers. The GUI can be seen during a mapping operation in Figure
27. Green thin bordered circles indicates the area of the images where the lens
distortion calibration error is assumed to be less than the acceptable threshold.

45



Figure 27: A graphical user interface displays the detected labels and allows
manual filtering by marking detections true or false with a mouse click. Product
ID and optional 3D location of the labels are displayed and modified in the right
side text field.

Detection of the beacons on top of the robot is done in the control center
program. Two roof mounted cameras are used to cover the full room from two
directions. The cameras are supplied by Axis Communications [2] and consist
of a F34 main unit with a F1004 and a F1005 lens. The detection of the beacons
are done mostly similar to the detectors described in the 6.3.1 Modcam camera
unit section with difference that it is only carried out in the red channel and with
different expected target frequency for the front and rear beacon. Images are
fetched with an average 12.9 fps over TCP/IP from the roof mounted cameras
base unit as intraframe compressed M-JPEG imaged sent as a stream of HTTP
replies. Maximum time to process one frame was during 109 seconds measured
to 180 milliseconds while the minimum was 63 milliseconds. The front and rear
beacons are flashing respectively at 6.25Hz and 3.125Hz which is mostly less than
the Nyquist frequency, i.e. half of the sampling frequency. While the frame rate
in the Modcam camera units is stable the frame rate of images acquired in the
control center from the roof cameras varies much. The variance in frame rate
is introduced by the non real time operating system running several threads on
each core. To solve this problem the time between two rising edges in Equation
53 is not calculated with the expected value of the frame rate but instead the
actual measured time of arrival. Using axis F-series cameras it is possible to
request a time stamp indicating the exact time of capture together with the
stream. While the capture time stamp requires model specific design to create
and decode the HTTP response the time of arrival was instead used. ea and
eb are in this case stored as time since boot up instead of frame number which

46



yields the delta time as
tb,a = eb − ea (71)

Figure 28: The frame rate of the roof mounted cameras during 109 seconds.
The frame rate is unstable due to the PC’s scheduling of threads.

The detected beacons are displayed as small circles in red for rear beacon and
green for front beacon in the GUI top view map by applying the homographic
transform to the image coordinates. The position and heading of the robot
is then calculated as the normalized vector from rear beacon to front beacon
respectively the centroid of the two coordinates in the world coordinate frame.
In Figure 29 the detection of front and rear beacon in two roof mounted cameras
can be seen. The green circles indicates that three out of four views of the
beacon LEDs were detected in this particular frame despite a bypassing person.
By filtering the detections over a couple of frames accurate and stable readings
can be achieved.
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Figure 29: The LED beacon detection program using two roof mounted cameras.
Left images shows detection of rear beacon, right images shows detection of
front beacon. At those particular frames the front beacon was located in both
cameras while the rear beacon only was located in the upper camera. Blue circles
mark areas of high time derivative, here mostly consisting of the movement of
a bypassing person, and green circles together with a confidence score indicate
areas with expected frequency content.

Communication with the robot’s computer is done over WLAN and is based
on a 2-way object stream using a socket server in the PC and a socket client
in the robot’s computer. Communication is done to update all information at
50Hz.

Communication with the Pricer Server is done through a Java socket client
implemented locally on the Pricer Server system. A request to flash the LED of
a label is sent to the client together with the labels product ID, flash strength
and requested duration, for further explanation see 6.3.6 Pricer Electronic Shelf
Label system integration.

6.3.5 SLAM/SfM implementation

Once all information about detection of labels, beacons in roof mounted cameras
and deduced tracking is acquired it is automatically exported to Matlab [10].
The communication between Java and Matlab is done with the Matlabcontrol
API [11] which is a wrapper for the undocumented Java Matlab Interface used
internally in Matlab. Matlabcontrol allows adding, modifying and removing en-
vironment variables in Matlab as well as evaluating instruction or calling func-
tions. All code used to model cameras, estimating positions, using perspective
N-point algorithms and bundle adjustments has been implemented in Matlab
during the project due to the easy use of linear algebra. One Matlab function

48



can be called after collecting information to calibrate the pose of all cameras on
the robot and the location of the beacons. Another function can be called to
estimate the world, i.e estimate position of all unknown labels and the location
and heading at all of the robots positions. All iterative minimization has been
solved with the lsqnonlin method using a subspace trust-region method based
on interior-reflective Newton method [38]. This method allows minimization of
bounded or non bounded multiple variable, multiple cost function problems. To
solve the minimization problems faster and more accurately all cost functions
have been split up into vectors of as many cost functions as possible. In the case
of a reprojection of one point in one camera this would mean one cost function
for error in y-direction and one for error in x-direction. On a problem with F
different robot locations, C cameras on the robot, P known or unknown points
and R roof mounted cameras looking for B beacons on the robot this would
result in 2PCF +2RB cost functions and the minimization algorithm searching
for

argmin
O

‖F ‖2 , F =




F1(O)
F2(O)

...
F2PCF+2RB(O)


 (72)

6.3.6 Pricer Electronic Shelf Label system integration

The Pricer server software has a text file based API. A Java program has been
developed to run in the server system and communicate with the other nodes
through a TCP/IP port. Once a request is received from the robot control
center the instruction is translated into the Pricer system script language and
written to a directory which has been set up for scanning by the server software.
The Pricer text based API is non real time and is scanned approximately every
third second. This combined with the non real time transmission between the
Pricer base station and the digital price labels introduces a considerable delay
of unknown magnitude. No feedback is available in the API to know when the
labels actually receives the flash LED command. To be sure that two digital
price labels are not flashing at the same time, resulting in a probability of mixed
up positions, a delay of many seconds between a flash end and a new flash start
is necessary. The server system also implements other APIs but the problem is
consistent through all of them.

6.3.7 Line detection

The line detection algorithm was first implemented using Matlab to evaluate and
extract images of the different steps. The Matlab implementation was very slow
and far from applicable in real time line following. A real time implementation
was made using the interpreted Python programming language [18]. Much of
the calculations are done using the efficient algorithms already implemented in
OpenCV and the Numpy [14] package for scientific computing. The iteration
over the pixels on each stroke and the counting of neighbors with same stroke
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width requires heavy looping over a total of millions of pixels in every frame. To
speed up this looping those parts of the code were implemented using Cython
[4] which is an optimizing static compiler for the Python and extended Cython
programming language. By using partly statically typed Python code built to
c-code and partly pure c-code called from the Cython methods to integrate them
with the rest of the Python program real time performance was achieved.

The gradients are calculated on the gray scale image. The RGB images from
the camera are recalculated to gray scale using

Y = 0.2989×R+ 0.5870×G+ 0.1140×B (73)

The Sobel operator is used to approximate the derivative of the gray scale
images. The kernels used for the convolutions to get the row- and column-wise
derivative are given by

Crow =



−1 −2 −1
0 0 0
1 2 1


 , Ccol =



−1 0 1
−2 0 2
−1 0 1


 (74)

Only the relations between the magnitudes are of interest, not the absolute
values. The magnitude of the gradient G = (Grow, Gcol)

T is simplified to speed
up calculations using the approximation

Gmag ≈ |Grow|+ |Gcol| (75)

Start and stop points are defined as the pixels where the gradients magnitude
is above a threshold t. Start pixels are defined as the ones where the gradient
along the column axis is positive, the rest are defined as end pixels. If pstart is
the set of all pixels in a start-map, pend is the set of all pixels in an end-map
and i ∈ I where I is all indexes in the maps

pstart,i =

{
Gmag,i > t and Gcol,i > 0 : Gmag,i

else: 0
(76)

and

pstop,i =

{
Gmag,i > t and Gcol,i ≤ 0 : Gmag,i

else: 0
(77)

The stroke length is found by starting on each nonzero pixel in the start-map and
stepping pixel by pixel in the negative direction of the gradient until the pixels
value in the end-map is nonzero. The method’s order of complexity is linear with
the number of nonzero pixels in the start-map and also linear with the stroke
width. Looping in Python is very slow mainly because of the large overhead for
both functions and variables. By using Cython compiler and extended language
the type of python variables can be statically typed and the access to multi-
dimensional arrays can be done using typed memoryviews. Instead of using
math and standard functions as defined in Python they are called from native c
libraries. Using this approach all loops can be compiled to pure c-code resulting
in several magnitudes of speed up.
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7 Experimental results

The experimental results are presented below and are the foundation of the
propositions about what methods and sensors to use. The result is split up
into four main parts, detection of digital price labels using vision systems, lo-
calization of robot based on different sensor data, including vision, as well as
the accuracy of mapping the 3D position of all price labels in the room and the
path planing using the line detection approach.

7.1 Detection of labels

The detection of the LEDs on the price labels show good detection rate in the
performance test. An evaluation was performed in 15 recorded video sequences
with a total of 31 flashing LEDs. The LEDs were sometimes flashing alone and
sometimes several together. The videos were recorded in different angles, some
with the sunlight from behind the cameras and some against the sun, some with
persons walking by in the background and at different distances from the labels.
The detector found 30 out of the total 31 labels with a total false positive count
of 1 resulting in both a recall and precision of 96.8 percent. The statistics for
each video sequence recorded can be seen in Table 1. During the final test in the
store-like environment built in the office, as can be seen in Figure 33, the total
number of true positives was 78 with 6 false positives. This yields a slightly
lower precision of 92.9 percent. The recall was not measured in this case but is
believed to be slightly lower. The largest problem encountered is LEDs reflected
in the walls or windows. The reflections shows the same frequency content and
thus can’t be filtered away by the bandpass filter. The intensity of a reflection
can be higher than the intensity of the direct view of a LED because of different
exposure times between cameras. These false detections will have to be sorted
away by outlier filters or robust projection methods.
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Table 2: Max view angle for label detection

Light condition Light direction Distance Max view angle
Very bright Behind camera 525 86.2
Very bright Behind camera 2520 - 1

Very bright Opposite camera 1300 76.3
Very bright Sideways of camera 1570 80.3

Fair Passive 3180 18.2 2

Distance in millimeters, angles in degrees
1 Over exposed in area surrounding label (Figure 30)
2 Close to maximum detection distance

Table 1: Precision and recall of LED label detector

# Labels # Detected # False detections Precision [%] Recall [%]
0 0 1 0 -
1 1 0 100 100
0 0 0 - -
0 0 0 - -
5 4 0 100 80
2 2 0 100 100
1 1 0 100 100 1

0 0 0 100 100
2 2 0 100 100 1

3 3 0 100 100
6 6 0 100 100
4 4 0 100 100
2 2 0 100 100
2 2 0 100 100
3 3 0 100 100
31 30 1 96.8 96.8
1 One or more bystanders walking by in camera view

LEDs in some positions of the image can be detected from large distances
and wide view angles while some other parts might be saturated such that the
light of the LED can’t be detected, see Figure 30. The maximum view angles of
some labels were measured and are presented in Table 2. The viewing distance
can easily be increased by lowering the threshold of the time derivative of the
pixels light level. Doing this however will increase the number of false detections.

52



Figure 30: Detection of label is not possible due to the over exposed and satu-
rated area covering the label.

7.2 Experimental environment results

Below follows the presentation of results achieved when mapping the in-office
10m2 room decorated to resemble a real store.

7.2.1 Manual measurement of true label position

The true positions of the digital price labels, used as a reference in the 7.2.3
Mapping accuracy section, were measured manually using a laser range finder.
The manual measurements are prone to error. To minimize the error every
distance between each of the points was measured and multidimensional scaling
was used to find the most probable location of each label. The mean error was
calculated to 13.3 millimeters and the maximum to 26.5 millimeters.

7.2.2 Robot positioning

The positioning of the robot has been compared using three different methods,
deduced reckoning using the odometers on the robots wheels, Perspective N-
Points (PnP) using a single camera image with a number of known points to
position the robot and the roof mounted cameras’ pose estimation of the robot.
All these results have been combined and used in the complete SLAM problem.

7.2.2.1 Perspective N-Points
A camera with a view of five digital price labels with known position on a
coplanar wall was used to find the cameras position using Perspective N-Points
algorithm. The error de = (X,Y, Z)T in world coordinates of a single test was
manually measured to

de = (19.4, 29.0, 70.1)Tmillimeters
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this resulted in a reprojection error Re in the image specified for each labels L2

norm distance error measured in the image to

Re = (1.35, 0.78, 0.50, 0.94, 0.25)Tpixels

distances from the camera to each of the labels are given by dlabel as

dlabel = (1138, 1064, 1191, 1137, 1232)Tmillimeters

7.2.2.2 Roof camera pose estimation
The positioning of the robot using the roof cameras was achieved with reasonable
precision. The standard deviation of detections projected to world coordinates
and detections direct from the camera sensor can be seen in Table 7.2.2.3. The
deviation was measured by having the robot statically placed in the center
of the room and recording a total of 352 detections during 20 seconds. The
precision in the measurements is dependent on the robots position in relation
to the roof camera. The perspective projection has a big influence on the errors
when the robot is far away from the camera. The standard deviation is in
most cases approximately above 1 pixel and it would probably be possible to
get better estimations by improving the LED flash finding detector. In Figure
31 the detections of the beacons can be seen. Note how the perspective warp
introduces a correlation in the error of the world coordinate detections. This
is however solved in the optimization by minimizing the reprojection error in
the cameras image planes instead of the error in world coordinates. Using this
techniques the solver will automatically trust a camera less if the robot is far
away than if it is just under the camera.

7.2.2.3 Position estimation standard deviation

Camera Beacon
STD

Pixels Millimeter
1 Rear 1.26 4.90
1 Front 1.15 5.39
2 Rear 1.72 9.08
2 Front 12.95 7.52
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(a) The estimated position of the robots
front and rear beacon (green, purple and
red, cyan) using their homography trans-
form to real world coordinates (mm). The
robot was placed stationary in the center
of the room.

(b) Position in image coordi-
nates of front and rear beacon
detected in camera 1. A total
of 142 detections of the rear
beacon have been mapped to
only 11 pixels in the camera
image.

(c) Position in image coordi-
nates of front and rear beacon
detected in camera 2. A total
of 139 detections of the rear
beacon have been mapped to
only 8 pixels. Two miss-
detections can be seen where
the front beacon has been
mixed up with the rear.

Figure 31: Detections of beacons during 20 seconds from two roof cameras. Two
things can be noted, the spread is mostly along the same axis. This correlation
exists because of the projective transform. The numbers of detections of front
respective rear beacon for camera 1 are 135 and 39 and for camera 2 137 and
11. Most of the points are placed exactly on top of each other, this is because
of the limited resolution (1280× 720) in the cameras.

7.2.2.4 Deduced reckoning
Deduced reckoning is always subject to drift due to the integration of the errors.
Using differential drive the robot is especially receivable to a rotational wrap
created by small angular differences resulting in large distance errors. The robot
has been tested on a textile surface using the roof mounted cameras as position
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reference. The result can be seen in Figure 32. Although the results are bad
on their own they give enough extra information to the SLAM algorithms to
induce good final results.

Figure 32: Comparison of the robots coordinates using the roof cameras (red
trail) and the deduced reckoning (blue trail). It can be seen that the deduced
reckoning suffer from a large drift creating the typical spiral pattern. Grid size
is 500mm.

7.2.3 Mapping accuracy

The result visualized in this chapter is based on a loop around the test environ-
ment. The images taken during the mapping and all detected digital labels are
seen in Figure 33. A top view schematic map with the obstacles can be seen in
Figure 18.

Figure 33: The images extracted by the four cameras during one loop around
the 10m2 room. Green circles are confirmed detections of price labels while red
are filtered outliers

Once the SLAM algorithm is completed the map of the room is presented
as a 3D-graph. Orange points represent the estimated location of all digital
price labels. If the true locations were submitted they are shown as red or
black dots. The red dots are connected to their corresponding estimation by
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a black line. If there are too few views of a price label to position it the true
location is marked black and no estimation is done. Each position of the robot
during the frames taken are visualized by a set of three arrows. These locations
are connected by dotted paths. One path represents the initial guess, taken
from deduced reckoning or roof mounted cameras tracking capabilities, and the
other track represent the estimated movement given by the SLAM algorithm.
In Figure 34 a mapping of the test room and 29 digital price labels can be seen.
In Table 3 the mean and median distance error of the estimated positions for
the 29 labels can be seen. It’s worth noting that most methods show similar
results but is about ten times more accurate than the linear method that is
commonly used. The estimation errors are calculated as the Euclidean distance
from the manually measured point locations. The measurement of the points
was explained in section 7.2.1 Manual measurement of true label position. The
results presented in Table 3 are from a single mapping route and it is worth
noting that many of the errors are within the measurement error of the true
locations and the estimations might thus be better than what is shown in the
results.

Figure 34: Mapping of a room with 29 digital price labels. Each labels estimated
position is shown as an orange dot while the true, manually measured, position
is shown with a red dot. A black line connects each true position with its
estimation. Black dots are non positionable due to too few views of it. Mapping
was done from seven locations and the pose estimated from deduced reckoning
is shown as a blue line while the estimated path using bundle adjustment is
shown in red. Axis units are in millimeters.
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Table 3: Estimation error of digital price labels position

Known
points

Localization
method

Estimation
method

Mean
error

Median
error

0 Roof mounted camera Bundle adjustment 66.4 33.7
0 Roof mounted camera Linear (SVD) 939 548
0 Deduced reckoning Bundle adjustment 70.4 46.5
0 Deduced reckoning Linear (SVD) 755.5 462.5
4 Roof mounted camera Bundle adjustment 55.0 34.0
4 Deduced reckoning Bundle adjustment 70.2 43.1

Estimation error given in millimeters

7.2.3.1 Known point references vs. all unknown
If some of the digital price labels in the room are placed at known locations these
can be used to find the pose of the robot. This can either complement or fully
replace the localization done by deduced reckoning or roof mounted camera
tracking. If only deduced reckoning is used no absolute world coordinates is
available and the resulting map will be in a local coordinate system with the
same scale. By complementing with two known points the absolute position can
be calculated for all other price labels. Figure 35 shows a comparison between all
unknown or four known points using the roof mounted cameras as position feed
back and Figure 36 shows the same comparison using only deduced reckoning.
No big difference in the results can be seen. From Table 3 the mean error using
four known points can be found to be 17 percent lower when using roof mounted
camera feedback and 0.3 percent using deduced reckoning.

7.2.3.2 Roof camera positioning vs. deduced reckoning
The position feedback from the roof mounted cameras resulted in a better result
albeit not significantly. The result using bundle adjustment with and without
the roof mounted cameras can be seen in Figure 35 vs. Figure 36. The estima-
tion achieved using the roof mounted cameras showed a 5.7 percent lower mean
error. When using the linear method for estimation of points, not using the
feed back from roof mounted cameras resulted in a 20 percent better estima-
tion. The result of using the linear method is very unstable and it would require
more tests to evaluate if the contradiction means something or is a coincident.

7.2.3.3 Linear vs. bundle adjustment
The bundle adjustment shows an extreme improvement in accuracy compared to
the linear method. One of the explanations for this has been investigated earlier
in the report covering the geometric importance of the minimized functions.
The estimation using only deduced reckoning was improved by 93.0 percent
when changing from linear triangulation using Singular Value Decomposition to
bundle adjustment. The corresponding improvement when using feed back from
roof mounted cameras is 90.7 percent. A weak side of the bundle adjustment
is its iterative approach. A linear triangulation demands very little processing
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Figure 35: Images show mapping of price labels using position feed back from
roof mounted cameras. Left image use 4 pre-known labels to improve positioning
while right image has no view of known points. Red points are true locations,
orange points are estimated locations. The yellow stroke is the estimated path
of the robot using the roof mounted cameras and the red stroke is the estimation
after bundle adjustment.

time. Many efficient algorithms have been developed for bundle adjustment and
the estimation based on the data used in this project should with no problems
be able to run in real time.
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Figure 36: Images show mapping of price labels using deduced reckoning. Left
image uses 4 labels with known position to improve positioning. Right image
is mapping with no known reference points. Note that absolute coordinates in
right image are arbitrary, with no known absolute reference the first location
of the robot was defined as origin. However the scale is kept constant thanks
to calibration of wheel rotary encoders. The visualization of the true points
has been shifted to a representation in this new coordinate system. Red points
is true location, orange points are estimated location. Yellow line is estimated
path of the robot using deduced reckoning from wheel rotary encoders while red
line is the estimation after bundle adjustment.

7.2.3.4 Sensitivity to initial guesses
Using the SLAM algorithm, in the optimal case the solution would be exactly
the same no matter the initial guess. However when using iterative minimization
that is not the case because of local minima. A good system should though be
insensitive to small variations in the initial guess. The sensitivity has been tested
by running the SLAM algorithm 50 times adding normal distributed noise to
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(a) Linear triangulation using single
value decomposition

(b) Linear triangulation combined with
bundle adjustment

Figure 37: Comparison of linear point triangulation using singular value decom-
position (left) and bundle adjustment (right). Mapping was done using robot
pose estimation from roof camera and iterative minimization of reprojection er-
ror to find most probable robot pose before labels were estimated. Red points
are true locations, orange points are estimated locations. Yellow stroke is esti-
mated path of the robot using the roof mounted cameras and red stroke is the
estimation after bundle adjustment.

the pose guess achieved from deduced reckoning. The noise is given by

Heading: σ =
π

20
rad, µ = 0

Position: σ = 200 mm, µ = 0
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29 points with known locations were used as references. As can be seen in Figure
38 the estimated path (red line) is just barely affected by the large variance in
the initial guesses (yellow lines). This is a very good result indicating a stable
method.

Figure 38: The path measured using deduced reckoning (yellow) was modified
with normal distributed noise. As can be seen the algorithm finds the same
maximum likelihood path despite the added noise. In the optimal case all red
paths would be the same, now only a small spread can be seen at the beginning
of the path.

7.3 Warehouse test

The following results were achieved during a field-test in a real warehouse envi-
ronment as seen in the blueprint given in Figure 21.

7.3.1 Manual measurement of true label position

The manual measurement of label positions in the in-house test described in
7.2.1 Manual measurement of true label position was done using multidimen-
sional scaling. Because of the vast store size and the large number of labels
this was not practically achievable in the warehouse test. Each labels was
therefore measured using just three measurements corresponding to x, y and
z coordinates. This increases the uncertainty considerably and it does not yield
estimation values for the accuracy and precision.

7.3.2 Deduced reckoning

Results of the deduced reckoning is highly dependent of the surface and friction
between the robots wheels and the ground. In difference from the soft textile
carpet in the test environment the floor in the warehouse is an epoxy coated
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concrete floor. The result of a test drive in the store is visualized in Figure 39
where the deduced reckoning is plotted together with manual measurements. As
in earlier tests it can be seen that the main source of error is the drift created
by non exact angle measurements.

Figure 39: The drift using deduced reckoning (red) is visualized together with
real path (green). Deduced reckoning creates only relative measurements and
the path has thus been rotated using an iterative minimization algorithm with
weights decaying as w = (N−n)2 where the first measurement point is at n = 0
and the last at n = N .

7.3.3 Mapping accuracy

The results in the following section are based on a path through two of the
rooms in the warehouse with 12 stops for mapping. As follows the result in the
warehouse lack the accuracy of the inhouse tests. The reasons for this can be
derived to the linear guessing method using singular value decomposition as a
primer for the bundle adjustment. These problems, and their suspected causes,
are further discussed in section 9 Discussion of results.

7.3.3.1 Linear vs. bundle adjustment
As can be seen in Figure 40 the linear estimation shows extremely poor results.
Due to this the initial guess for the bundle adjustment is far from the true
optimum. In Figure 41 it can be seen that the bundle adjustment can’t correct
for an error this big. In Figure 40 many price labels can be seen to be on the
opposite side of the robot than in true life, this yield peaks in the iterative
optimization function that is hard to cross and it can thus not be expected that
the bundle adjustment would solve a situation like this.
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Figure 40: Using singular value decomposition as linear estimation method to
estimate label positions in the warehouse turns out to be insufficient in this
experiment.

Figure 41: The linear estimation used as guess for the bundle adjustment is
too far from the truth to result in a true estimate using the iterative bundle
adjustment. The resulting error is however improved to approximately 2

3 of the
error using linear method.

By inspecting the reprojection error of each estimated point an accuracy
measure can be achieved. This measure can be used to ignore points that are
badly placed by the linear estimation before the bundle adjustment is used.
This will improve the results considerably but just a fraction of the unknown
point’s positions will be estimated. See Figure 42.
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Figure 42: When ignoring uncertain points in the bundle adjustment a better
estimation of both path and label positions is achieved, however many of the
labels are retained without estimated position.

7.3.3.2 Sensitivity to initial guesses
The result is clearly a bad estimation given by a non optimal local minimum.

This is also clear when looking at the response to disturbance in the initial
guess. The noise is, as in the in-house test environment, given by the normal
distribution with

Heading: σ =
π

20
rad, µ = 0

Position: σ = 200 mm, µ = 0

As can be seen in Figure 43 the estimated path takes big differences when the
guess changes just a bit. This is a clear sign that the result is not trustworthy.
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Figure 43: In a case of a poor estimation the estimated path of travel (red)
changes much when the initial guess (yellow) is changed.

7.3.3.3 Direct or piece-wise estimation
With a dense data point set and good position estimates from deduced reck-
oning the estimation of all poses in a single bundle adjustment generates good
results. However when the deduced reckoning offers a large drift or uncertainty
or when the set of detected data points is sparse the results are improved when
using piece-wise estimation of the robots pose as an increasing subset iteratively
analyzed with the bundle adjustment. In Figure 44 a case with extremely sparse
set of data point labels is presented. In a) all positions are at once estimated
using the complete formulation of the bundle adjustment, in b) the first two
positions were estimated using bundle adjustment and thereafter one new loca-
tion was added in each iteration until the complete problem was solved. As can
be seen the set-up is an extreme case where the relation of seen labels yields
low information and the deduced reckoning must be highly trusted. Without
piece-wise estimation the bundle adjustment find an absurd solution, in opposite
when using increasing subsets the algorithm find a more plausible solution.
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(a) Solution of the whole problem stated
as a single bundle adjustment problem.
The solution is found in an absurd mini-
mum.

(b) Solution using 8 on each other follow-
ing bundle adjustments using increasing
subsets of mapping locations.

Figure 44: Bundle adjustment of a sparse data problem where the iterative
approach of prediction using increasing subsets show large value. Graph unit in
millimeters.

7.4 Line detection

The line detector developed during the project shows far better results than any
of the other published methods found. In the following section a broken down
analysis of the fundamental steps is presented. The stroke width algorithm and
the clustering are first presented on an image of black tracks on a gray slightly
textured background, seen in Figure 45. The line filtering is then presented with
an image of a highly textured floor. The complete algorithm is then presented
on a number of hard to find lines in a variety of background surfaces. Finally
the algorithm is compared to the basic methods often used as foundation in
other algorithms.

7.4.1 The stroke width algorithm

In Figure 46 the steps of the algorithm can be seen. The first step visualized
in a) is the detection of start and stop pixels on the border of the lines. These
are found by thresholding the gradient and it can be seen that most of the non-
bordering pixels are not marked although there are several outliers especially
around the lighter colored crack in the floor. Figure b) shows the stroke width
beginning and ending on the bordering pixels. Black strokes are filtered away
due to not finding a nonzero end pixel before the maximum stroke width was
reached. Red lines are filtered away due to non opposite gradients in the start
and end pixel (a deviation of 10◦ was allowed). Figure c) and d) visualizes the
stroke angle and stroke length as a color for each pixel that is a centroid of a
stroke. These sparse images are not necessary to create, most pixels are zero
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and to save memory space only the nonzero values can be stored in a dictionary
together with their image coordinates.

Figure 45: A view of some dark lines on a brighter and slightly textured floor.

If the method is set to look for dark lines a line brighter than the background
will result in strokes going in the opposite direction, out from the line, and a
corresponding border pixel will thus not be found. The only difference when
looking for a dark or bright line is if the algorithm is looking along the gradient
(bright line) or in the opposite direction (dark line). The strokes from the
algorithm looking for dark lines can be seen in Figure 47.

7.4.2 Line clustering

The lines are clustered using DBSCAN density based clustering algorithm to
find the different line segments. This is useful for the navigation. If the robot
can see several segments of lines it will need to reason about which line it
is currently following. This can be done if the lines are segmented using a
clustering algorithm. The result of a DBSCAN clustering can be seen in Figure
48 where three different line segments are found. The clustering is performed
in four dimensions, the image coordinates, the stroke length and the stroke
direction. This allows a smooth transitioning curve with a constant width to be
clustered together even if there are some gaps in the detections along the lines.
A sharp 90◦ angle will be clustered together if the detections along it are dense.

7.4.3 Line shape filtering

A line has been defined to be considerably longer than wide. If square or circle
markers exist on the ground and their side length or radius is within the stroke
width searched for they will pass through the stroke width filter. This is due to
the fact that they also have gradients of the opposite directions on the opposite
sides. The result of this without a length to width ratio filter is displayed in
Figure 49. These are filtered away by defining a minimum ratio between the two
points within the same segment that are furthest apart and the average of the
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(a) Start and end points of strokes indi-
cated in green and red. Points are given
by thresholding the magnitude of the gra-
dient.

(b) The resulting strokes. Black strokes
did not pass the length filter and red did
not pass the maximum angle difference.

(c) Color indicating the stroke angle
marked at the center of each stroke that
passed through the filter.

(d) Color indicating the stroke length
marked at the center of each stroke that
passed through the filter.

Figure 46: Detection of lines on a slightly textured background. Image c) and d)
shows the four parameters of each stroke that passed through the stroke length
and delta angle filter: image coordinates, stroke length and stroke angle.

stroke width contained in the cluster. Using a 1:10 filter the results are given
to the left in Figure 54.

7.4.4 Detection of lines

The detection of lines has been tested thoroughly on several surfaces ranging
from asphalt and concrete to wooden floors. Results can be seen in Figure 50-52.
For each tested surface six images are displayed. Top left shows the raw image
from the onboard camera. Top right is the top-down view achieved by remapping
the pixels using the homography transform. Middle left shows the detected start
pixels as green markers and stop pixels as red markers. Middle right shows a
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(a) Closeup of the strokes on a segment of the
line. The red strokes with to big difference in
angle between the gradients on the two sides
can be seen to be unreliable in direction and is
thus filtered away.

(b) A closeup of the strokes from
a brighter colored line using a de-
tector looking for dark lines. The
strokes follow the negative gradi-
ent and thus can’t find a corre-
sponding border pixel, thus the
line is filtered away.

Figure 47: The strokes on a detected line versus a line with the wrong color.

Figure 48: Clustering of the strokes using DBSCAN based on the four parame-
ters, image coordinates, stroke length and stroke angle.

color coded map representing the stroke width for each pixel. Left bottom
represent the probability score in a color coded map. Right bottom marks all
detected pixels in a line segment using color coding for different segments. The
numbering of clusters in the right bottom image in Figure 51 and 52 indicates
that smaller clusters not fulfilling the length:width ratio have been dropped in
the morphological filter stage.
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(a) Dark square markers on the floor
with parallel edges and a width within
the specified line width will pass
through the stroke width filter.

(b) After the clustering square
markers will be marked as their
own line segments. These can be
filtered away by looking at the re-
lation of the line length and mean
stroke width.

Figure 49: The effect of not using a line segment length to stroke width ratio
filter is displayed above.

Figure 50: Detection of a dark line on a mixed concrete-asphalt ground
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Figure 51: Detection of two dark line segments on a wooden floor

Figure 52: Detection of a dark line on asphalt ground

7.4.5 Comparison to commonly used algorithms

A comparison to three other common methods can be seen in Figure 53 to 55.
The other methods used to compare are pure fixed value thresholding, Otsu
thresholding and Hough line transform. The other methods are not complete
line detection algorithms but shows the foundation used in many algorithm.
The method developed during the project shows near perfect results on the
three test cases while the other methods will require lots of tuning and filtering
to give some useful information.
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The fixed value thresholding has been manually tuned to fit all test cases as
good as possible. Otsu’s method automatically calculated the optimal threshold
value for every image by maximizing the inter-class variance and minimizing
the intra-class variance of the pixel values. The Hough line transform is carried
out on an image preprocessed with a Canny edge detector. The Hough line
transform tries to find straight lines that will fit to as many pixels as possible
during a continuous or mostly continuous path.

As can be seen in Figure 53 to 55 the method developed during the project
shows state of the art results in the line following detection at the same time as
it is possible to run in real time on limited hardware. As expected it can also
be seen that the fixed value thresholding is not generalizing enough to deal with
images in different light conditions and colors. The Otsu thresholding manages
to extract a bit more information of where the line is but barely more than
making it usable as prepossessing or part in a bigger chain of operations. The
Hough line transform can in some cases find the straight segments of the line but
will also find a lot of other things. Especially in Figure 54 where the background
is covered with a mesh the Hough line transform hardly finds anything else than
background elements.

Figure 53: A comparison of the line detection algorithm developed during this
project (most left image) and three other commonly used algorithms. From left:
In project developed algorithm, fixed value thresholding, Otsu thresholding and
Hough line transform.
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Figure 54: A comparison of the line detection algorithm developed during this
project (most left image) and three other commonly used algorithms. From left:
In project developed algorithm, fixed value thresholding, Otsu thresholding and
Hough line transform.

Figure 55: A comparison of the line detection algorithm developed during this
project (most left image) and three other commonly used algorithms. From left:
In project developed algorithm, fixed value thresholding, Otsu thresholding and
Hough line transform.

7.4.6 Real time performance

For line following applications it is important that the algorithm runs in real
time and can react fast on environmental conditions. Since the algorithm needs
to be able to execute onboard a mobile robot the method was optimized using
the Cython extended programming language as a complement to the non cal-
culation heavy parts implemented in Python. Standard algorithms were used
as implemented in the OpenCV library. The OpenCV library contains several
assembler level optimizations to avoid delays such as data hazards and pipeline
stalls and fully make use of single instruction multiple data architectures. It
was thus decided without further investigation that no more time would be
spent to optimize this. Instead the optimization was done only on the heavy
custom methods implemented in this project. The speed up is on the scale of
several orders of magnitude which is a very good result. Even more speed up
can be expected by further optimizing the code in C or partly implementing in
assembler.
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8 Future work

After finishing this project the recommendation is that further work focuses on
two main areas except the adaption for large scale production: minimizing the
time consumed for the mapping and improving the stability. The small scale
tests in the 10m2 room prove that the mapping using the current setup and
software can yield more than satisfying results although the algorithms are far
from finally tuned. The failed experiments in the warehouse however need to
be addressed to find the cause and possibly a solution to improve stability. By
looking at what improvements can be done in the methods and in the imple-
mentation of each step a far more robust system could be achieved.

To simplify further work and encourage comparisons the complete data set
from both the in-house test and the warehouse including system calibrations
has been made publicly available online. Instructions how to get the data set
are attached in Appendix A.

8.1 Analyze large scale results

The warehouse test was performed in the end of the master’s thesis and no
time was available to investigate what the limiting factors were. The bad linear
estimation used as a guess to initialize the bundle adjustment can be assumed
to be a problem considering its large deviation from ground truth. This can
be confirmed by using the manually measured positions of the labels as an
input guess to the bundle adjustment. The accuracy of the manually measured
positions of the labels is, as described in section 7.3.1 Manual measurement of
true label position, considerably lower than in the in-house test. This might
affect the stability of the test regarding noise in initial test presented in section
7.3.3.2 Sensitivity to initial guesses. This might be tested by adding noise to
the manual measurements in the in-house test and evaluating the results of the
same test repeated.

8.2 Improving mapping speed

The mapping today is a very slow process. The biggest issue is the time con-
sumed to detect one digital label’s LED flash at a time. The time spent to detect
a single flash is set to 16 seconds to minimize the possibility of false detections
and improve the recall. This time spent for one detection should be possible
to reduce without drastic changes. The Pricer system allows only fixed steps
of flashing time which may pose a problem when it comes to faster detection.
Also the fact that the Pricers API does not allow any feedback of the state of
the LEDs introduces a need to wait for a considerable amount of time between
LED flashes to be sure that only one LED is flashing at a time. These prob-
lems could be avoided by integrating the system directly with Pricer’s system
without using the API designed for third party developers.

Some other recommendations for improvement of the speed is discussed bel-
low and includes the need for more efficient bundle adjustment techniques, op-
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timizing the robot’s route through the environment and removing unnecessary
flashing and detection of LEDs that does not introduce significant new infor-
mation.

8.2.1 Efficient bundle adjustment

The bundle adjustment algorithm is today implemented using a nonlinear least-
squares solver using a vector-valued function, lsqnonlin, implemented in Matlab.
These generic minimization algorithms are much slower than methods imple-
mented purely for the use in bundle adjustment. Faster methods have been
frequently evaluated in research papers such as [55],[71].

8.2.2 Minimize label flashes

As a complement to just optimizing the route to yield the best views of the
labels a reasoning of whether the location gives an improvement of the result or
not can be conducted for each label. If the view of a label is close to the same
angle as an earlier view of it this label can be skipped in the detection process
and thus saving time. Another prioritization between speed and accuracy is
if a label already seen from enough views to locate it should be looked for or
skipped from the current position.

8.2.3 Optimal route

The choice of the route reflects directly on the number of frames needed and
the precision of the result. The route used in the experiment has been manually
decided by human input. In the section 5 Navigation and route planning two
different approaches were introduced, including the force field navigation. This
method is however not finalized and needs a lot more effort put into it to give
better results than the line following approach. By optimizing the locations the
frame are captured at the number of needed views of a label can be minimized.

8.2.4 Line following improvements

The line following shows close to perfect results in most conditions tested. Some
outliers can be found but will not pose a big problem if a robust method is used
to fit the line based on the detected points. Most improvements would consider
the time consumption. Although the algorithm does execute in real time today
further speed up could make it possible to run on less capable hardware or even
embedded microcontrollers.

The similarity measure between points are measured using L2 norm. The
covariance of stroke length and angle is known and thus another similarity mea-
sure like Mahalanobis distance could be used to account for the correlation.
The Mahalanobis distance is a unitless multi-dimensional distance based on the
standard deviation. The distance of a set of vectors X with the mean values
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given by µ and the covariance matrix S can be calculated as

dM (X) =

√
(X − µ)TS−1(X − µ)

The registration of point clouds to create a full map and the control of the
robot based on the layout of the line has only been briefly touched in this report
and are big topics for further studies.

8.3 Improving accuracy

The changes to improve accuracy is in many cases a contradiction to the pro-
posals in the 8.2 Improving mapping speed section. As an example reducing the
number of views will increase the speed of the mapping but reduce the accu-
racy. In these cases a prioritization need to be done to assess what is the most
important feature.

8.3.1 Denser viewpoints of cloud

If the detections of LEDs can be sped up considerably the number of views could
be increased resulting in better estimations and less impact of noise. In a real
retail store the point cloud representing the digital labels would be extremely
denser than what is used in the experiments during the project. This can be
expected to increase the accuracy of the mapping. With sparse point clouds
every point is important for the localization while with more redundant data
the detection of outliers is simplified and zero mean based noise will be more
averaged out.

8.3.2 Improving LED detection

The standard deviation of the LED detections presented in the results are typi-
cally above 1 pixel and it would be possible to get better estimations by improv-
ing the LED flash finding detector. Especially the smoothing step in the detector
can result in detected centroids moving away from actual projected centroids.
This could be improved by after finding a confirmed detection moving back to
original unaltered full-resolution image and performing a sub pixel optimization
to find its centroid. Another problem is if the image contain a saturated blob
bigger than one pixel around the LED. In that case it is not possible through
software to find the true location. This could be solved by taking better control
over the exposure time to avoid saturation. Using that technique it is however
possible to lose track of LEDs which might be weaker because of projection
or view angle. By taking several images at different exposure time both these
problems could be avoided but the detection time would be increased.

8.4 Limiting factors

Several improvements can be done to reach a more practical time consumed for
the mapping and even better accuracy.
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8.4.1 Sequential detection of labels

In this project the price labels have been detected one at a time. Improve-
ment can be done by several different techniques. By flashing several labels
at the same time the detection could be assigned to the closest of the from
another pose previously detected labels. Using a more traditional SLAM ap-
proach all LEDs could flash at the same time and by using matching the stream
of incoming points could be merged to a point cloud. An example of a method
commonly used to find the corresponding points is Iterative Closest Point (ICP)
[30]. Using the possibility to uniquely identify every point makes many meth-
ods implementable that otherwise would be impossible or inefficient. A binary
method could be used where each label is assigned a minimal unique binary
code and each label with a true value at an increasing binary position is set to
flash. This method would be highly reliant on definitive detection, if a flash-
ing label is not detected every time it would be identified as another label. A
more efficient way would be to implement a unique flash pattern in every label.
All signs could then be detected simultaneously resulting in considerable time
savings.

8.4.2 Stop of movement for mapping

If the robot should be able to map on-the-go without stopping the cameras
need to be synchronized and the algorithm for flash detection modified. With
the cameras running independently the maximum time difference between the
two closest frames in two cameras can be described by

∆t =
1

ffps
= 100mS

The distance traveled by the robot during this time is described by

∆d = Sspeed ×∆t ≈ 50mm

and is typically small. Even though the distance traveled by the robot during
this time is small the angle difference can introduce a substantial error into the
triangulation. When the robot is turning the difference in angle is described by
the rotational speed, ω, and the passed by time

∆α = ω ×∆t ≈ 0.1π

a label at a distance, R = 4000mm, away can thus get a worse error of

derror = ∆α×R ≈ 1256mm

The SDK distributed by Modcam is not designed to make synchronization of
cameras possible although future releases of the SDK might make it possible.
During the project the pose of the robot has been held fixed during the collection
of frames.
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8.4.3 Limited accuracy

The restriction of the results precision seems to be a combination of camera
resolution, centroid detection accuracy and camera calibration. The detection
of the LEDs centroid is done on a slightly blurred image to reduce impact of
pixel flicker due to noise around sharp edges. This estimation of the centroid
could be improved by going back to the original image and performing a subpixel
interpolation. The detection of centroids is also prone to errors if several pixels
around the LEDs are saturated. The camera lens calibration is done using a
sixth degree polynomial equation. This could probably be improved by using
an eighth degree polynomial which might be necessary due to the cameras’ wide
view angles.

8.4.4 Sparse data for localization

The relative pose estimation could be improved by combining the detection of
labels’ LEDs with the detection of other fixed points in the images to create
denser point clouds. Such points could be SIFT-points or other as mentioned
earlier automatically detected points in the images or physically placed points
such as QR-codes.

8.4.5 Limited hardware for deduced reckoning

The deduced reckoning might be improved by combining with an inertial-measurement
unit (IMU) to measure acceleration around six axes, rotation and translation.
Especially a compass module, or hardware with similar use, to avoid drifting
headings might improve the results notable.

8.4.6 Bugs in implementation

Communication between cameras and control center server is done using the
Java ServerSocket and Socket objects. When the communication was performed
using the in Modcam built in WiFi-module the transmission of a data package,
using Javas object stream, could sometimes freeze for several seconds. This
delay causes the implemented image buffer in the cameras to fill up which for a
yet unknown reason causes the software in the cameras to crash. Although the
reason has not been found it is suspected that a deadlock is introduced in the
thread safe monitor causing further serious problems. Due to the already slow
mapping combined with these crashes the test in the real warehouse could not
be performed as dense as planned.
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9 Discussion of results

In the project it has been proved that an accurate mapping of a room based on
a small number of price labels is possible. However it has also emphasized the
importance of a robust system and it can be established that the construction
of such is hard. The test in the warehouse resulted in bad mapping results and
the reason is still not ascertained. This shows the need for a stable system that
is not receivable to disturbance and that is easy to use and configure. However,
the area of SLAM/SfM has been much researched and improving the methods
from a proof of concept to a production ready system should not be impossible.

9.1 Reprojection errors and false minima

From the mapping results presented for the test environment and the field-
test in the warehouse it is clear that a false local minimum has been found
in the latter. The reason for this is hard to find and needs to be addressed
as a continuation of the project. The linear estimation is clearly a source of
the problem but considering the instability of the algorithm seen even when
all labels have known position it is not the only problem. One theory is that
the relative poses of the cameras might have been accidentally altered while
the robot was moved to the warehouse. Another reason might be the more
limited view of price labels. To isolate the cause of the problem the mapping
would need to be performed in the original test environment once again. This
is however not easily achieved while the equipment was removed and relocated
to the warehouse.

To evaluate the quality of a solution the reprojection errors in the cameras
are of great value. Looking at the final errors in the test environment gives the
following reprojection errors given in pixels

Max: 64.69, Mean: 7.36, Median: 5.16, Min: 0.02

The same errors for the test in the warehouse are given by

Max: 99999.00, Mean: 57050.02, Median: 99999.00, Min: 0.58

The maximum errors which have the same value as the median indicate a limi-
tation in the calculation accuracy.

9.2 Usefulness

Although the mapping is what has been of greatest focus in this report the
other parts are also by them self interesting for the evolution of technology and
robotics in retail and other areas for robotic use.

The detection of digital price labels using vision system can be used in
many areas other than mapping. The vision system does not need to be placed
at a mobile robot, it could be the already existing surveillance cameras or it
could be a hand held video camera. Other than positioning of the labels similar
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detectors could be used to transfer small amount of data using cheap and already
installed hardware. By using communication based on only a flashing LED and
the surveillance cameras information could be sent using very cheap and small
hardware with low energy consumption.

Positioning of the camera using a small amount of known or unknown land-
marks can be used as a low resource demanding localization of robots or cameras
compared to the more common algorithms using e.g. Scale-invariant feature
transform (SIFT) [34], Speeded Up Robust Features (SURF) [29], or Binary
Robust Invariant Scalable Keypoints (BRISK) [61].

Different means of navigation during the mapping introduces different pro
et contra. The commonly used random patterns are easy to implement but are
very ineffective and not predictable. These methods are recommended to avoid
due to the large variances in the results they would introduce and the enormous
time the robot would have to consume to avoid ambiguities in all places of
the environment. The force field navigation which has been briefly touched is a
powerful mean of navigation capable of maximizing the results while minimizing
the consumed time. Implementation is not straight forward though and much
more research would need to be done to propose recommendations of exactly
formed methods. Line following is a robust and predictable method that is easy
to implement both in the robotic hardware and in the store environment. By
choosing a good strategy when placing the line a low time consumption and
good results can easily be achieved. If the aesthetic aspect of having a line on
the floor is a problem other methods exist, developed for the industry, which
are based on among others magnetic fields. These methods however demands
more physical changes in the environment and greatly increases the installation
cost.

The line following method developed can be used in many cases where high
performance line following is needed, either for good accuracy or for high speed
navigation such as line following contests. The method is efficient enough to
run a high speed navigation on a mobile robot equipped with a Raspberry Pi 3
compact computer. Line following is also used in many industrial applications
where automated transports are used.
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10 Conclusion

During the project high precision and accuracy mapping has been achieved
and as a proof of concept the project is considered a success. As a result the
need for a robust system has also been emphasized during the warehouse test.
Recommendations for design and further work have been formed. The main
drawback with the current implementation is the slow mapping process and the
lack of robustness. Further work should focus on fully automated and faster
mapping with higher robustness.

Different methods and location systems were compared and it can be seen
that the minimum hardware case where no fixed external hardware beyond the
robot and Pricer Electronic Shelf Labels system, that is already installed in more
than 13’000 retail stores world wide, shows more than adequate results. With a
good designed system without complementary hardware almost as good results
are achievable resulting in installation savings of time and money. Even though
the fixed cameras on the room walls increased the precision of the mapping
they can be considered not worth the cost. The results are satisfying for a retail
environment without them and by not using them the installation is simplified.

It can also be seen that the iterative minimization using bundle adjustment
proposed in this report generates far better result than the linear methods that
are not seldom used.

The navigation planning was briefly touched and a novel method for line
following was developed as a navigation aid for the project. The new method
developed shows state of the art results compared to the current methods com-
monly used today. The algorithm detects and clusters line segments with high
precision and recall while being efficient enough to execute in real time in close
to any PC. Several improvements over the commonly used algorithms were in-
troduced. A common line following control method after image segmentation
is to calculate the center of gravity of the pixel segments and drive towards it.
This method has proved to work reasonably well but the method described here
allows several improvements of the robot control. Using center of gravity the
robot will cut corners short without any possibility to impact how much. If two
lines gets visible in the field of view the robot will drive in the center between
the lines. By vectorizing the lines, as showcased in this project, and cluster
them it is possible to specify exactly how much or little the robot is allowed to
cut corners. For fast navigation the path can be optimized to be as short as
possible and for exact navigation the path can be exactly followed.
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Appendix A

SLAM data set

Data set for SLAM in the in-house room as well as in the warehouse is made
available online for future comparison and further work. Data set includes de-
tections in calibrated images, position and heading from deduced reckoning and
true manually measured label positions. For further info read instructions on
the download page and the included read-me file.

http://da-robotteknik.se/learningrep/slam masters.php



Appendix B

Deduced reckoning or dead reckoning

It is clear that in a historical view the correct term to use has been dead reck-
oning. The term has been used for hundreds of years to describe the navigation
technique where the current position is estimated by using the vessel’s speed,
course and deserted time. In the 20th century the use of the term deduced
reckoning became popular. The source of it is unclear even though it holds a
more intuitive explanation of the process than dead reckoning. In the newspaper
Oakland Tribune you could in 1947 read

A friend of mine who prides himself on being a precisionist, went to
see ”Dead Reckoning” the other night and I asked him how he liked it.
”Oh, the picture was fine,” he said, ”but the title ...” ”What’s wrong
with the title?” I asked. He looked down his nose at me. ”Theres no
such thing as ’dead reckoning’, ”he replied. ”It’s ’Ded’ Reckoning,
which is short for ’Deduced Reckoning’. Ask any navigator.”

In US patent US6046565 A the same mistake is done

Ded-reckoning, often called dead-reckoning in error, is a shortening
of the term deduced reckoning.

Using Google Books
Ngram viewer the
following usage
statistics from 1700
to 2008 was found.
Although it can be
seen that dead reck-
oning still today is
the most common
term the trends
shows that deduced
reckoning is up
and coming. This
latter term is also
what is commonly
used in professional
situations today
and is why the use
in this report was
decided in favor for
that.
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Daniel Falk. Cognitive vision for line following using stroke width vectorization,
2016. Manuscript submitted for publication.



Cognitive vision for line following using stroke width
vectorization
Falk, Daniel1
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ABSTRACT
Line following in mobile robotics is both popular in industrial environment and recreational competitions. This
paper aim to propose a method for visual line tracking and segmentation which allows real time analysis at high
frame rate. Possible curvilinear line segments are found by searching the image for constant width strokes which
are defined by adverse bordering gradients. The method is novel using an approach based in text detection. Results
are state-of-the-art with the ability to detect either dark or bright lines in heavily textured background surfaces with
high precision rate. By clustering the found line segments, multiple lines can be in the view without affecting the
tracking. Tests in diverse environments prove that the method is superior to the commonly used algorithms.

KEYWORDS
Line following, navigation, computer vision, cognitive science, stroke width transform

1. Introduction
Line following is a popular mean of navigation for mobile robotics
in the industry mainly because of its easily predictable character.
Many of the biggest international competitions in robotics include
line following where the speed and robustness of the control are
tested. Here a new algorithm for detecting curvilinear lines is
presented. It is developed based on the fundamental steps of
Stroke Width Transform [1]. The Stroke Width Transform turned
out to be a revolution of the OCR text detection in natural images
when it was published in 2010. This paper aim to propose a
method considerably less process demanding which allows real
time analysis at high frame rate. Possible line segments are found
by searching the image for constant width strokes which are
defined by adverse bordering gradients. By clustering the found
line segments multiple lines can be in view without negatively
affecting the tracking.

2. Defining a line
Lets make some assumptions to define a line; a line is bordered
by a high derivative stroke on each side, the strokes are assumed
to be on approximately the same distance from each other, i.e. the
with of the line is approximately constant. The gradients of the
two borders have adverse directions, i.e. the borders are parallel to
each other and the background on both sides of the line are either
brighter or darker than the line itself. A visualization of this can
be seen in Figure 1 which shows the gradients in a photography
of a line. The gradient on opposite sides of the line can be seen
to be at approximately π radians angle in relation to each other.
In Figure 2 it can be seen that simply thresholding the gradient
magnitude in an image can be enough to find a dark line on a
brighter colored background. The same is true for the inverted
case where the line has a brighter color than the background. In
many cases other objects and shadows can be hard to differentiate
from the line using only this technique. Combining this with
filtering of stroke width and edge gradient direction can however
make the method robust. The stroke width is the distance between

Figure 1. Visualization of the gradients in a photo of a dark line,
spanning over a slightly textured background, clearly shows the
constant line width and adverse directions of the bordering
gradients

the two peaks in the derivative’s magnitude. This can be assumed
to be approximately the same along the length of the line if the
perspective transform is taken into account.

3. Top view perspective transform

Given two arbitrary planes in R3 it is possible to calculate a
transformation matrix from one plane to the other if enough cor-
respondence is known. The projective transformation consist of
a similarity transform, an affinity and a projectivity. The nature
of the perspective transform will result in parallel lines mapping
to non-parallel lines. To keep the assumption of parallel borders
of the line valid it is thus important to conduct a perspective
transform to get a top-down view of the lines to track. A trans-
formation from R2 to R2 is done by multiplication between the
homogeneous coordinate and a 3×3 matrix. The correspondence
between the image plane and the ground plane can be found by a
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Figure 2. The derivative of each color channel along an axis
perpendicular to a black line in a RGB image

calibration using a chessboard pattern placed on the ground. The
transformation matrix can be found by either a linear approxi-
mation using e.g. direct linear transform (DLT) combined with
singular value decomposition (SVD) [2] or an iterative approach
such as bundle adjustment. The images used need to have an
Euclidean coordinate system. Lens distortion can be non linear
and thus the coordinate system of an uncalibrated camera is not
Euclidean. Especially when using wide angle cameras the im-
age will be distorted in what is sometimes called a barrel shape.
The lens distortion has been modeled using three radial and two
tangential parameters. Let u′ and v′ describe the estimated co-
ordinates in the distorted image based on the coordinates u and
v in an Euclidean image. Parameters k1 to k3 are used to model
radial distortion while τ1 and τ2 model the tangential distortion.
A common model is then described by

u′ = u∗ (1+ k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6)+2τ1uv+ τ2(r2 +2u2)

v′ = v∗ (1+ k1 ∗ r2 + k2 ∗ r4 + k3 ∗ r6)+ τ1(r2 +2v2)+2τ2uv

r2 = u2 + v2

(1)

To undistort an image the inverse of the lens distortion is needed.
It is not suitable to find an algebraic inverse to Equation (1)
however making use of Banach fixed-point theorem, [3],[4], an
iterative solution can be implemented as following

Algorithm 1 Inverse distortion for an image point x = (u′,v′)T

u := u′

v := v′

while change < converge criteria do
r2 := u2 + v2

cinv := 1/(1+((k3r2 + k2)r2 + k1)r2)
lx := 2τ1uv+ τ2(r2−2u2)
ly := τ1(r2 +2v2)+2τ2uv
u := cinv ∗ (u′− lx)
v := cinv ∗ (v′− ly)

return u,v

Given a homogeneous coordinate in the camera’s Euclidean im-
age plane, ρ = (u,v,1)T , and a coordinate χ = (x,y,1)T in the
ground plane, the relation using a 3×3 homography transforma-
tion matrix H can be written

χ ∝ Hρ (2)

or by introducing a scalar λ which represent the arbitrary scale
factor

λ χ = Hρ (3)

Exploiting Equation 3 for every point correspondence in the
planes and applying direct linear transform yields an equation of
the form Ah = 0 where

A=




−u1 −v1 −1 0 0 0 x1u1 x1v1 x1
0 0 0 −u1 −v1 −1 y1u1 y1v1 y1
−u2 −v2 −1 0 0 0 x2u2 x2v2 x2

0 0 0 −u2 −v2 −1 y2u2 y2v2 y2
...

...
...

...
...

...
...

...
...

−uN −vN −1 0 0 0 xNuN xNvN xN
0 0 0 −uN −vN −1 yNuN yNvN yN




(4)

and

h =




h1
h2
...

h9


 (5)

By using singular value decomposition the approximative nullspace
is given [5] by the eigenvector of A, found in the columns of V ,
corresponding to the smallest eigenvalue, found in the diagonal
elements of Σ

A =UΣV ∗ (6)

where V ∗ is the conjugate transpose which is equivalent to V T

when A consist of non-complex values. The matrix H is found
by reshaping h to a 3×3 format. Given that homogeneous coor-
dinates are up to scale and that H is a 3×3 matrix, H has only
eight degrees of freedom. Each point correspondence results in
three new equations but also a new unknown scale factor, thus the
number of points required to find the homography matrix, with
the scale invariant considered, is given by

3N−N ≥ 9−1⇔ N ≥ 4 (7)

2
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4. Finding the lines
The gradients are calculated in a gray scale image. The RGB
images from the camera are recalculated to gray scale using

Y = 0.2989×R+0.5870×G+0.1140×B (8)

The Sobel operator is used to approximate the derivatives of the
gray scale images. The kernels used for the convolutions to get
the row- and column-wise derivatives are given by

Crow =



−1 −2 −1
0 0 0
1 2 1


 , Ccol =



−1 0 1
−2 0 2
−1 0 1


 (9)

The magnitude of the gradient, G = (Grow,Gcol)
T , is approxi-

mated, to speed up the calculations, using the simplification given
by the L1 norm

Gmag ≈ |Grow|+ |Gcol| (10)

Pixels with a gradient magnitude above a threshold value are in
this stage assumed to be pixels on the lines’ borders. These are
split into two groups: start pixels and end pixels. The pixels
in the first group are defined by a negative value in column-
wise gradient. For each start pixel an iteration in the image is
performed. If the start pixels gradient is given by α then dark lines
on brighter background is found by iterating along the direction
of −α while brighter lines on darker background are found by
iterating, in the opposite direction, along α . The iteration is
performed until a (non-zero) end pixel is reached. The moved
distance and the angle between the start pixel’s gradient and the
end pixel’s gradient are saved, these are the stroke width l and the
stroke border angle difference δ . If the stroke width l is between
an upper and a lower threshold and δ is below a maximum angle
then all visited pixels defined by the stroke are marked with the
minimum of the values corresponding to the stroke length, l, or
the value already assigned to the pixel. That is, if I is the set
containing all saved line strokes

∀i ∈ I : tl,lower < li < tl,upper and δi < tδmax (11)

and Li is the set of all pixels covered by the stroke i then the new
pixel value pnew

j is at the assignment of each stroke set to

∀ j ∈ Li : pnew
j = min(pold

j , li) (12)

If the method is applied to every start pixel in the image an output
map is formed where the pixels in the line segments are intensity
encoded with their stroke width. Some outliers will be present but
the true lines are characterized by their approximately constant
stroke width and thereby intensity. For each pixel at (i, j)T in
the output map marked with a stroke width li, j the number of
neighbors with approximately the same value is counted. Only
neighbors within a kernel with a specified side length d, satisfying
d ∈ {2N+1}, around the pixel are counted and a maximum ratio
r between two pixels’ values is allowed. Each pixel can thus
get a probability score vi, j defined as the normalized number of
neighbors fulfilling the ratio test. If Pt is the set of all pixels

Figure 3. By following the pixel at a dark line’s border in the
opposite direction of its gradient the opposite bordering pixel is
found, the angle δ can be assumed small if the line’s edges are
approximately parallel

fulfilling the ratio criteria and (k, l)T is all neighboring pixels
contained in the kernel around (i, j)T then

∀li, j ∈ Pt :
1
r
≤ lk,l

li, j
≤ r,

k ∈ {i+∆i : |∆i| ≤ d−1
2

, i+∆i ∈ N},

l ∈ { j+∆ j : |∆ j| ≤ d−1
2

, j+∆ j ∈ N}

(13)

The probability score for each pixel is then defined as the normal-
ized number of elements in Pt

vi, j =
Pt

d2 (14)

where the overlines represents the cardinality.

5. Internal representation and clustering
With a top-down view of the detected and vectorized lines in
the robot’s local coordinate system several views can be stitched
together to a complete map in a fixed frame coordinate system.
If the distance moved by the robot during one image frame is
shorter than the distance covered by the camera, the views of the
lines will be overlapping. Many algorithms exist for registration
of overlapping point clouds which can be applied. A common ap-
proach is Iterative Closest Point [6], [7] where the transformation
of two point clouds is calculated by minimizing the sum of the
squared distances between points in the two clouds. When several,
non connected, lines are seen in the image they need to be differ-
entiated through clustering. In every frame knowledge of which
line to follow is required. This is done using a priori knowledge
of which line that was followed in the last frame in combination
with either the transform achieved from the point registration or
from deduced reckoing. A similarity measure between pixels can
be calculated in four dimensions where each pixel is described
by the vector qi = (i, j, l,γ)T where i, j is the image coordinates
in the top-down view image, l is the stroke width assigned to
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the pixel and γ is the angle of the stroke covering the pixel. The
similarity of two points is defined as the inverse of the Euclidean
distance

sa,b =
1

‖(pa− pb)� (c1,c1,c2,c3)T‖2
(15)

where � represents the hadamard product allowing different
weight factors compensating for the various units. The lines
form long, narrow segments that may partly encircle each other,
thus center-based algorithms such as k-means [8] are not suitable.
A density based algorithm, such as DBSCAN [9], is instead pro-
posed. DBSCAN will not cluster all elements but will instead
filter low density areas as outliers, a functionality which is ap-
preciated in the line segment detection context. With the line
segments divided into clusters morphological filters can be ap-
plied. In this paper only one such filter was implemented, a length
to width ratio. The distance between the two points furthest away
from each other within the cluster was compared to the mean
stroke width of the same cluster.

6. Trajectory planning
The stroke width detection algorithm offers several advantages
when the trajectory planning is to be implemented. In every
point of the detected line the line’s normal is known and can be
used to optimize the trajectory. Using the differences between
the normals at two or more points the curvature of the path is
obtained. This curvature is an important feature when the speed
of travel is decided.

7. Experimental results
The algorithm has been implemented using a Python and Cython
combination for evaluation of performance and execution speed.
The results show good performance and are presented in Section
7.1 and 7.2.

7.1 Detection of lines
The detection of lines has been tested thoroughly on several
surfaces ranging from asphalt and concrete grounds to wooden
floors. Results are seen in Figures 4-6. For each tested surface six
images are presented. Top left images show the raw frames from
the onboard camera. Top right are the top-down views achieved
by remapping the pixels using the homography transform. Middle
left show the detected start pixels as green markers and stop pixels
as red markers. Middle right show an intensity encoded map
representing the stroke width of each pixel. Left bottom represent
the probability score in a color coded map. Right bottom images
mark all detected pixels in a line segment using color encoding
for different segments. The numbering of clusters in the right
bottom images in Figure 5 and 6 indicate that smaller clusters,
not fulfilling the length:width ratio, have been dropped in the
morphological filter stage.

7.2 Real time performance
Real time performance is crutial in high speed line following. The
number of strokes has been vastly reduced by defining start and

Figure 4. Detection of a dark line on a mixed concrete-asphalt
ground

Figure 5. Detection of two dark line segments on a wooden floor

end pixels as a highly limited subset of all the images’ pixels,
as seen in middle left images in Figure 4-6. Stroke detection
and creation of probability map is capable of running on limited
hardware (Intel Core i5 M460 @2.53GHz using a single core)
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Figure 6. Detection of a dark line on asphalt ground

at full camera frame rate, 30fps, in high resolution mode up
to 700 by 500 pixels. Clustering using DBSCAN has however
introduced stricter limitations of frame rate or resolution.

8. Conclusion
The algorithm developed shows good performance with high
accuracy and potential for high speed navigation. Diverse back-
ground surfaces for the line following have been tested with good
results. Fast navigation that demands full camera frame rate must
be limited to a lower resolution than the 700 by 500 pixels used in
the experiment or a more time efficient clustering algorithm must
be utilized. The clustering method’s impact on the frame rate is
dependent on the total number of pixels marked as line segments
in the image. Lower image resolutions do not pose a problem for
line following although the total information is reduced.
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